Взаимосвязь обменов в организме. Патохимия сахарного диабета

Рассмотрим синтез эндогенной воды. Дело в том, что кислород в принципе довольно токсичное соединение, поэтому фактически так называемый аэробный распад

Взаимосвязь обменов в организме. Патохимия сахарного диабета

Курсовой проект

Биология

Другие курсовые по предмету

Биология

Сдать работу со 100% гаранией

1. Понятие о метаболизме, его стадиях

 

Любой живой организм - это открытая система, то есть его жизнедеятельность тесно связана с окружающей средой, откуда он получает питательные вещества и кислород, а выделяет конечные продукты распада. Самые разнообразные преобразования, происходящие в организме с поступившими соединениями, носят название метаболизма, который включает две тесно взаимообусловленных фазы: анаболическую и катаболическую. Первая представляет эндогенный синтез веществ или их поступление извне. Катаболизм - прямо противоположный процесс: распад химической молекулы или выделение её из организма.

Естественно, чтобы организм функционировал нормально, необходимы тесные контакты между физическими и химическими превращениями самых разнообразных по природе соединений.

Особая роль в регулировании этих процессов принадлежит балансу энергии, причем катаболизм обычно сопровождается её высвобождением, а большинство реакций биосинтеза принадлежит к эндэргоническим.

Все известные классы органических веществ, обнаруживаемых в тканях, включают представителей от самых простых, не способных к гидролизу, до очень сложных биополимеров. Поэтому в катаболической фазе выделяют три стадии: гидролитическую, специфическую и неспецифическую. Гидролитическая стадия характеризуется распадом сложных углеводов, липидов, полинуклеотидов и белков до монопроизводных. Она локализуется в желудочно-кишечном тракте, где в роли субстратов выступают пищевые компоненты, а также в тканях - в этот процесс вовлекаются вышеперечисленные эндогенные представители.

Специфическая стадия - это дальнейший окислительный (аэробный, реже - анаэробный) распад моноструктур. Основная цель - привести специфические превращения к одному знаменателю (чтобы уменьшить количество необходимых ферментов). Такими общими метаболитами служат ацетил-КоА, пируват и некоторые соединения цикла трикарбоновых кислот (схема 1). После гидролиза полисахаридов образуются моносахариды, в первую очередь, глюкоза. Она поступает в клетку и фосфорилируется под действием фермента гексокиназы. Фосфорный эфир глюкозы (глюкозо-6-фосфат) подвергается гликолизу, конечным продуктом которого является пируват. В митохондриях эта a-кетокислота под влиянием полиферментного комплекса преобразуется в ацетил-КоА (окислительное декарбоксилирование пирувата). Аналогичные изменения происходят с продуктом гидролиза многих дву- и более компонентных липидов (нейтральных жиров, глицерофосфатидов) - глицерином. Он также фосфорилируется и после окисления превращается в дигидроксиацетонфосфат или глицероальдегид-3-фосфат, которые являются метаболитами гликолиза. Конечное соединение последнего, как уже было указано выше, используется в процессе окислительного декарбоксилирования ПВК. Высшие жирные кислоты - компоненты большинства липидов - служат субстратами аэробного окисления, в результате образуется ацетил-КоА.

 

Схема 1. Стадии катаболизма основных биополимеров

Составные части сложных липидов - азотистые основания и продукты гидролиза белков - аминокислоты - в своем составе содержат аминогруппу, что, естественно, обеспечивает им специфичность. Отсюда эти соединения, лишаясь NH2 - группы, сохраняют углеродный скелет, который легко преобразуется в выше названные вещества (пируват, ацетил-КоА и метаболиты цикла трикарбоновых кислот).

Для большинства органических структур конечными продуктами распада являются углекислый газ, вода, а для азотсодержащих - ещё и аммиак, который обезвреживается, превращаясь в мочевину. Углекислый газ образуется путем обычного декарбоксилирования.

Рассмотрим синтез эндогенной воды. Дело в том, что кислород в принципе довольно токсичное соединение, поэтому фактически так называемый аэробный распад органических веществ осуществляется обычно не присоединением кислорода к субстрату, а отщеплением от последнего водорода. Электроны и протоны, проходя через ряд промежуточных переносчиков, достигают кислорода с последующим образованием воды (биологическое окисление). В этом процессе происходит ступенчатое высвобождение энергии (чаще три, реже два раза). Почти половина её используется для синтеза АТФ из АДФ и неорганического фосфата (окислительное фосфорилирование). Другая часть, выделяясь в виде тепла, обеспечивает постоянство температуры тела теплокровных животных, в том числе человека. В природе есть много веществ, в первую очередь, токсины патогенной микрофлоры, которые нарушают взаимодействие биологического окисления с окислительным фосфорилированием, в результате возрастает количество тепловой энергии (гипертермия) и снижается генез АТФ. Последний является универсальным макроэргом, который используется в мышечном сокращении, передаче нервного импульса, в биосинтезе различных соединений. Поэтому патология биоэнергетических процессов проявляется развитием мышечной слабости, общим недомоганием (симптоматика, характерная для большинства инфекционных заболеваний).

Следует отметить, главная реакция, ответственная за перенос водорода на кислород, обеспечивается следующими переносчиками: НАД+, ФАД или ФМН, витаминами Е или К, коэнзимом Q. Поэтому дефициты витаминов РР (компонент НАД+), В2 (составная часть ФАД, ФМН), К, токоферолов провоцируют развитие патологических состояний.

Если сопоставлять обе фазы метаболизма - анаболическую и катаболическую, окажется, что они тесно взаимосвязаны между собой. Продукты расщепления используются в организме для синтеза различных веществ, кроме того, энергия, высвобождающаяся при распаде соединений, необходима для образования макромолекул. И третье связующее звено: в реакциях окисления, характерных для катаболизма, образуются так называемые восстановительные эквиваленты (например, НАД+Н+, НАДФН+Н+, ФАДН2), водороды которых входят в состав органических соединений.

Таким образом, в анаболической фазе также можно выделить три стадии, причем первая - неспецифическая - общая для обеих фаз. Её продукты могут поставляться для генеза продуктов липидного, углеводного и азотистого происхождения. Вторая стадия анаболизма завершается образованием простейших специфических представителей разных классов (моносахаридов, высших жирных кислот, аминокислот и др.). Синтез биополимеров может идти двумя способами. Для получения гликогена или гетерополисахаридов (гиалуроновой кислоты, хондроитинсульфата, гепарина) требуются лишь активированные субстраты (УДФ-глюкоза, УДФ-галактоза и их производные), соответствующие ферменты. Генез же полипептидов (белков) называется матричным, так как для обеспечения специфичности протеина необходима матрица, роль которой выполняет информационная РНК, в свою очередь, для синтеза последней матрицей служит транскриптон ДНК.

Как мы ни стараемся разделить все протекающие в клетке процессы, сделать это невозможно. Все они тесно связаны между собой, жёстко зависят друг от друга. Поэтому повреждение хотя бы одного звена всегда приводит к глубоким нарушениям самых разных сторон метаболизма. Для иллюстрации данного суждения остановимся на характеристике взаимоотношений углеводного метаболизма с другими видами обменов.

 

2. Взаимосвязь углеводного обмена с другими видами метаболизма

 

Общепринятым показателем, используемым в клинике в качестве индикатора состояния углеводного метаболизма, служит уровень глюкозы в крови. Её значения определяются у здорового человека сроком приёма, объёмом еды, характером питания, а также методом исследования. В среднем содержание этого моносахарида в крови в норме 3,3 - 5,5 ммоль/л. Возможно развитие двух вариантов физиологических гипергликемий: 1) алиментарная - после приёма пищи; 2) эмоциональная - следствие действия стрессоров (надпороговых раздражителей физической, химической, биологической, психогенной природы).

Так как глюкоза - универсальный источний энергии, то её уровень в сосудистом русле может быстро снижаться, если его не поддерживать с помощью эндогенной формы. Основным органом, ответственным за сохранение нормогликемии, является печень, хотя определённую роль в этом играют почки, где происходит вначале фильтрация, а затем реабсорбция данного углевода в кровь.

Практически все ткани способны накапливать глюкозу путем её полимеризации в гликоген, который затем при необходимости распадается (гликогенолиз). Вышеназванный процесс особенно активно протекает в гепатоцитах, так как они обладают самой высокой способностью депонировать этот гомополисахарид. А главное, в указанных клетках присутствует глюкозо-6-фосфатаза, с помощью которой цитозольный глюкозо-6-фосфат, лишаясь фосфата, приобретает способность преодолеть мембрану и выходить в сосудистое русло для поддержания гомеостаза глюкозы крови. Этот энзим регистрируется также в слизистой тонкого кишечника и, естественно, в почках (схема 2).

Но запасы гликогена в организме довольно ограничены, поэтому при высокой вероятности развития гипогликемии индуцируется глюконеогенез - синтез глюкозы из продуктов неуглеводного происхождения. К ним относятся много самых различных соединений, только они должны удовлетворять следующим условиям: в их составе должно быть не менее трёх атомов углерода; если в молекуле присутствует кето-группа, необходимо, чтобы она обязательно находилась в a-положении.

Следовательно, источниками глюкозы могут быть метаболиты цикла трикарбоновых кислот (ЦТК), лактат, пируват, глицерин, многие аминокислоты (гликогенные). Но высшие жирные кислоты, продукты их распада - кетоновые тела, ацетил-КоА, некоторые аминокислоты (лейцин, валин, изолейцин, фенилаланин, тирозин) (кетогенные) не способны стать участниками глюконеогенеза.

Глюкоза из крови может проникнуть в нуждающиеся в ней клетки путем облегченной диффузии, в обеспечении которой большую положительную роль играет холестерин билипидного слоя плазмолемм. При гипогликемии этот способ не работает и тогда включается активный транспорт. Стимулируется локализующаяся в мембране

Похожие работы

1 2 3 4 5 > >>