Вероятностно-статистические методы моделирования экономических систем

Вообще говоря, следует понимать, что истинный закон распределения (если он, конечно, существует), описывающий погрешности конкретной измерительной системы, остается (останется) неизвестным,

Вероятностно-статистические методы моделирования экономических систем

Дипломная работа

Менеджмент

Другие дипломы по предмету

Менеджмент

Сдать работу со 100% гаранией

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вероятностно-статистические методы моделирования экономических систем

 

 

Введение

 

Под задачей идентификации закона распределения наблюдаемой случайной величины (структурно-параметрической идентификации), как правило, понимают задачу выбора такой параметрической модели закона распределения вероятностей, которая наилучшим образом соответствует результатам экспериментальных наблюдений. Случайные ошибки средств измерений не так уж часто подчиняются нормальному закону, точнее, не так часто хорошо описываются моделью нормального закона. В основе измерительных приборов и систем лежат различные физические принципы, различные методы измерений и различные преобразования измерительных сигналов. Погрешности измерений как величины являются следствием влияния множества факторов, случайного и неслучайного характера, действующих постоянно или эпизодически. Поэтому понятно, что только при выполнении определенных предпосылок (теоретических и технических) погрешности измерений достаточно хорошо описываются моделью нормального закона.

Вообще говоря, следует понимать, что истинный закон распределения (если он, конечно, существует), описывающий погрешности конкретной измерительной системы, остается (останется) неизвестным, не смотря на все наши попытки его идентифицировать. На основании данных измерений и теоретических соображений мы можем только подобрать вероятностную модель, которая в некотором смысле наилучшим образом приближает этот истинный закон. Если построенная модель адекватна, то есть применяемые критерии не дают оснований для ее отклонения, то на основе данной модели можно вычислить все интересующие нас вероятностные характеристики случайной составляющей погрешности измерительного средства, которые будут отличаться от истинных значений только за счет не исключенной систематической (ненаблюдаемой или нерегистрируемой) составляющей погрешности измерений. Ее малость и характеризует правильность измерений. Множество возможных законов распределения вероятностей, которые можно использовать для описания наблюдаемых случайных величин, не ограничено. Бессмысленно ставить целью задачи идентификации нахождение истинного закона распределения наблюдаемой величины. Мы можем лишь решать задачу выбора наилучшей модели из некоторого множества. Например, из того множества параметрических законов и семейств распределений, которые используются в приложениях, и упоминание о которых можно найти в литературных источниках.

Классический подход к структурно-параметрической идентификации закона распределения. Под классическим подходом будем понимать алгоритм выбора закона распределения, целиком базирующийся на аппарате математической статистики.

 

 

1. Элементарные понятия о случайных событиях, величинах и функциях

 

Мы уже видели, что для многих экспериментов нет никаких различий в подсчёте вероятностей событий, тогда как элементарные исходы в этих экспериментах очень различаются. Но нас и должны интересовать именно вероятности событий, а не структура пространства элементарных исходов. Поэтому пора во всех таких «похожих» экспериментах вместо самых разных элементарных исходов использовать, например, числа. Иначе говоря, каждому элементарному исходу поставить в соответствие некоторое вещественное число, и работать только с числами.

Пусть задано вероятностное пространство .

Определение 26. Функция называется случайной величиной, если для любого борелевского множества множество является событием, т.е. принадлежит -алгебре .

Множество , состоящее из тех элементарных исходов , для которых принадлежит , называется полным прообразом множества .

Замечание 9. Вообще, пусть функция действует из множества в множество , и заданы -алгебры и подмножеств и соответственно. Функция называется измеримой, если для любого множества его полный прообраз принадлежит .

Замечание 10. Читатель, не желающий забивать себе голову абстракциями, связанными с -алгебрами событий и с измеримостью, может смело считать, что любое множество элементарных исходов есть событие, и, следовательно, случайная величина есть произвольная функция из в . Неприятностей на практике это не влечёт, так что всё дальнейшее в этом параграфе можно пропустить.

Теперь, избавившись от нелюбопытных читателей, попробуем понять, зачем случайной величине нужна измеримость.

Если задана случайная величина , нам может потребоваться вычислить вероятности вида , , , (и вообще самые разные вероятности попадания в борелевские множества на прямой). Это возможно лишь если множества, стоящие под знаком вероятности, являются событиями - ведь вероятность есть функция, определённая только на -алгебре событий. Требование измеримости равносильно тому, что для любого борелевского множества определена вероятность .

Можно потребовать в определении 26 чего-нибудь другого. Например, чтобы событием было попадание в любой интервал: , или в любой полуинтервал: .

Убедимся, например, что эквивалентны определения 26 и 27:

Определение 27. Функция называется случайной величиной, если для любых вещественных множество принадлежит -алгебре .

Доказательство эквивалентности определений 26, 27.

Если - случайная величина в смысле определения 26, то она будет случайной величиной и в смысле определения 27, поскольку любой интервал является борелевским множеством.

Докажем, что верно и обратное. Пусть для любого интервала выполнено . Мы должны доказать, что то же самое верно и для любых борелевских множеств.

Соберём в множестве все подмножества вещественной прямой, прообразы которых являются событиями. Множество уже содержит все интервалы . Покажем теперь, что множество является -алгеброй. По определению, тогда и только тогда, когда множество принадлежит .

1. Убедимся, что . Но и, следовательно, .

2. Убедимся, что для любого . Пусть . Тогда , так как - -алгебра.

3. Убедимся, что для любых . Пусть для всех . Но - -алгебра, поэтому

Мы доказали, что - -алгебра и содержит все интервалы на прямой. Но - наименьшая из -алгебр, содержащих все интервалы на прямой. Следовательно, содержит : .

Приведём примеры измеримых и неизмеримых функций.

Пример 25. Подбрасываем кубик. Пусть , и две функции из в заданы так: , . Пока не задана -алгебра , нельзя говорить об измеримости. Функция, измеримая относительно какой-то -алгебры , может не быть таковой для другой .

. Если есть множество всех подмножеств , то и являются случайными величинами, поскольку любое множество элементарных исходов принадлежит , в том числе и или . Можно записать соответствие между значениями случайных величин и и вероятностями принимать эти значения в виде «таблицы распределения вероятностей» или, коротко, «таблицы распределения»:

 

 

Здесь .

 

2. Пусть -алгебра событий состоит из четырёх множеств:

 

,

 

т.е. событием является, кроме достоверного и невозможного событий, выпадение чётного или нечётного числа очков. Убедимся, что при такой сравнительно бедной -алгебре ни , ни не являются случайными величинами, поскольку они неизмеримы. Возьмём, скажем, . Видим, что и

 

2. Числовые характеристики случайных величин

 

Математическое ожидание. Математическим ожиданием дискретной случайной величины Х, принимающей конечное число значений хi с вероятностями рi, называется сумма:

 

(6а)

 

Математическим ожиданием непрерывной случайной величины Х называется интеграл от произведения ее значений х на плотность распределения вероятностей f(x):

 

(6б)

 

Несобственный интеграл (6б) предполагается абсолютно сходящимся (в противном случае говорят, что математическое ожидание М (Х) не существует). Математическое ожидание характеризует среднее значение случайной величины Х. Его размерность совпадает с размерностью случайной величины. Свойства математического ожидания:

 

(7)

 

Дисперсия. Дисперсией случайной величины Х называется число:

 

(8)

 

Дисперсия является характеристикой рассеяния значений случайной величины Х относительно ее среднего значения М (Х). Размерность дисперсии равна размерности случайной величины в квадрате. Исходя из определений дисперсии (8) и математического ожидания (5) для дискретной случайной величины и (6) для непрерывной случайной величины получим аналогичные выражения для дисперсии:

 

(9)

 

Здесь m = М (Х).

Свойства дисперсии:

 

(10)

 

 

Среднее квадратичное отклонение:

 

(11)

 

Так как размерность среднего квадратичного отклонения та же, что и у случайной величины, оно чаще, чем дисперсия, используется как мера рассеяния.

Моменты распределения. Понятия математического ожидания и дисперсии являются частными случаями более общего понятия для числовых характеристик случайных величин - моментов распределения. Моменты распределения случайной величины вводятся как математические ожидания некоторых простейших функций от случайной величины. Так, моментом порядка k относительно точки х0называется математическое ожидание М (Х - х0) k. Моменты относительно начала координат х = 0 назыв

Похожие работы

1 2 3 > >>