Векторные многоугольники в физических задачах

Межпредметные связи физики и математики вполне естественны: физика не только экспериментальная, но и точная наука, широко применяющая различные математические методы.

Векторные многоугольники в физических задачах

Курсовой проект

Педагогика

Другие курсовые по предмету

Педагогика

Сдать работу со 100% гаранией
p> 

Легко установить связь между углами вылета в JI-системе и в Ц-системе:

 

, (2.4 7)

 

причем если при каждому значению соответствует одно значение , то при каждому значению соответствует два значения (за исключением случая ).

Перейдем к изучению столкновений частиц. Задача о неупругом столкновении двух частиц обратна задаче о распаде частицы на две, рассмотренной выше. В Ц-системе справедливо выражение (2.4 1), а величина в этом случае равна приращению внутренней энергии составной частицы, образовавшейся в результате неупругого столкновения.

Рассмотрим задачу об упругом столкновении двух частиц, при котором не изменяется их внутреннее состояние. Как известно, в JI-системе скорость центра масс двух частиц с массами и скоростями и определяется выражением:

 

. (2.4 8)

 

Скорости частиц до столкновения в Ц-системе связаны с их скоростями в JI-системе известными соотношениями

 

, , (2.4 9)

 

где . В силу закона сохранения импульса импульсы обеих частиц в Ц-системе остаются после столкновения равными по модулю и направленными в противоположные стороны, в силу закона сохранения энергии модули импульсов в Ц - системе при столкновении не меняются. Таким образом, в Ц-системе результат столкновения сводится лишь к повороту скоростей обеих частиц, причем после поворота скорости остаются направленными в противоположные стороны. Если единичный вектор выражает направление скорости первой частицы после столкновения, то в Ц-системе.

 

,. (2.4 10)

 

Чтобы вернуться к JI-системе, нужно к этим выражениям добавить скорость центра масс:

 

(2.4 11)

 

Этим исчерпываются сведения, которые можно получить из одних только законов сохранения импульса и энергии. Направление вектора зависит от условий взаимодействия частиц (от взаимного расположения во время столкновения и т.п.).

Для геометрической интерпретации результатов перейдем опять к импульсам. Из (2.4 11) получим:

 

(2.4 12)

 

где - приведенная масса частицы. Векторная диаграмма импульсов, соответствующая (2.4 12), приведена на рисунке 9. Здесь

 

,,.

 

При заданных и радиус окружности и положения точек А и В неизменны, а точка С может иметь любое положение на окружности.

 

С

 

 

 

А О В

 

 

 

 

Рисунок 9.

 

В частном случае, когда частица с массой до столкновения покоится в JI-системе, имеем:

 

,, (2.4 13)

 

т.е. на диаграмме т. В лежит на окружности; ОВ = ОС - радиус, вектор совпадает с импульсом первой частицы до удара. При этом точка А может находиться внутри (если ) или вне (если ) окружности (рисунок 10). Несложно показать, что углы и отклонения частиц после столкновения по отношению к (к направлению удара) могут быть выражены через угол поворота первой частицы в Ц-системе:

 

,, (2.4 14)

 

СС

 

 

А О В А О В

 

 

 

Рисунок 10.

 

Модули скоростей частиц после удара в Л-системе также могут быть выражены через угол и модуль относительной скорости до удара:

 

,

. (2.4 15)

 

Отметим, что сумма определяет угол разлета частиц после столкновения. При эта сумма больше , при - меньше , угол разлета частиц равной массы прямой.

Заключение

 

В ряде случаев векторный способ имеет преимущество перед координатным, не только упрощая решение конкретной задачи, но и превращая иногда сложные на первый взгляд задачи в подстановочные, решаемые практически устно.

В работе рассмотрены возможности использования одного из не-стандартных методов решения задач механики в курсе физики средней школы. Основные результаты можно сформулировать следующим обра-зом:

1. Показана роль решения задач при обучении физике, приведены алгоритмы решения задач координатным способом.

2. Сформулированы теоретические основы векторных способов решения избранных задач кинематики и динамики.

3. Подобраны и составлены задачи, для решения которых целесообразно применение векторных способов.

Данные задачи могут быть использованы на уроках физики общеобразовательной школы, для формирования навыков у учащихся применения векторных способов для решения задач.

Литература

 

1. Секержицкий, В.С. Векторные способы решения избранных задач механики / В.С. Секержицкий, И.В. Секержицкий [Электронный ресурс]. - Электрон. текстовые, граф., дан. (4 Мб). - Брест: БрГУ имени А.С. Пушкина, 2009. - Рег. № 88 от 19.11.2009.

2. Бугаев А.И. Методика преподавания физики в средней школе. / Бугаев А.И. // Просвещение. - 1981. - С.211-218.

3. Кабушкин В.К. Методика решения задач по физике. / Кабушкин В.К. // Изд-во Ленинградского ун-та - 1972. - С 132-140.

4. Каменецкий С. Е Методика преподавания физики в средней школе. / Каменецкий С.Е., Иванова Л.А. // Просвещение. - 1987. - С. 204-212.

5. Перышкин А.В. Основы методики преподавания физики. / Перышкин А.В. // Просвещение. - 1984. - С.92-108.

Похожие работы

<< < 1 2 3