Варианты алгоритма возведения в степень: повышение точности и ускорение

Достойная альтернатива, позволяющая достаточно точно приближать гладкие кривые, такие, как y=2**x, - аппроксимация сплайнами. Говоря простым языком (возможно, чересчур простым

Варианты алгоритма возведения в степень: повышение точности и ускорение

Информация

Компьютеры, программирование

Другие материалы по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией

Варианты алгоритма возведения в степень: повышение точности и ускорение.

Максим М. Гумеров

Как, никто этого еще не придумал?

Не берусь судить. Вероятно, задача о том, как максимально быстро возвести действительное положительное число в произвольную действительную степень, решалась примерно столь же часто, как и вставала, - а вставала, полагаю, не раз. И все же не так давно я с ужасом обнаружил, что RTL из состава Borland Delphi последних версий (как Delphi 6, так и Delphi 7) подходит к решению не более профессионально, чем прилежный пятиклассник, впервые столкнувшийся с такой проблемой.

Взглянем на исходный код функции Power из модуля Math, любезно предоставленный Borland Software:

function Power(const Base, Exponent: Extended): Extended;

begin

if Exponent = 0.0 then

Result := 1.0 { n**0 = 1 }

else if (Base = 0.0) and (Exponent > 0.0) then

Result := 0.0 { 0**n = 0, n > 0 }

else if (Frac(Exponent) = 0.0) and (Abs(Exponent) <= MaxInt) then

Result := IntPower(Base, Integer(Trunc(Exponent)))

else

Result := Exp(Exponent * Ln(Base))

end;Примечательно, что в благих целях оптимизации процессор оставляют наедине с целой толпой ветвлений, приводящих его, в конце концов, в общем случае к пресловутому решению пятиклассника, а именно, к тривиальной формуле

(1) x**y = exp(ln(x**y)) = exp(y*ln(x)).

Здесь x**y означает возведение x в степень y, a exp(x) = e**x.

Что плохого в таком подходе к решению? Во-первых, в набор инструкций FPU не входит ни операция вычисления exp(x), ни взятия натурального логарифма ln(x). Соответственно, результат вычисляется в несколько этапов, в то время как можно пойти более прямым путем, как будет показано ниже. За счет этого падает скорость вычисления; кроме того, здесь действует интуитивное правило, которое грубо можно сформулировать так: чем больше операций выполняется над числом с плавающей запятой в регистрах сопроцессора, тем больше будет и суммарная погрешность результата.

ПРИМЕЧАНИЕ

Позднейшая проверка показала, что как Visual C из Visual Studio .NET, так и C++ Builder 4.5 реализуют возведение в степень более качественно. Используемый в них вариант концептуально не отличается от того решения, которое я хочу предложить.Есть предложение

Давайте проведем инвентаризацию. Какие инструкции сопроцессора связаны с возведением в степень или взятием логарифма? Приведу краткую выдержку из [1] и [2]:

F2XM1 вычисляет 2**x-1, где -1<x<1.

FSCALE (масштабирование степенью двойки) - фактически считает 2**trunc(x), где trunc(x) означает округление к 0, т.е. положительные числа округляются в меньшую сторону, отрицательные в большую.

FXTRACT извлекает мантиссу и экспоненту действительного числа.

FYL2X вычисляет y*log2(x), где log2(x) логарифм x по основанию 2.

FYL2XP1 вычисляет y*log2(x+1) для -(1-1/sqrt(2))<x<1-1/sqrt(2) c большей точностью, нежели FYL2X. Здесь sqrt(x) означает вычисление квадратного корня.

Вот, в общем-то, и все. Но уже на первый взгляд этого хватает, чтобы понять, что задача может быть решена более прямо, чем предлагает RTL Borland Delphi.

Действительно, почему не заменить показатель степени в (1) на 2? Ведь неперово число отнюдь не является родным для двоичной арифметики! Тогда получится

(2) x**y = 2**log2(x**y) = 2**(y*log2(x)).

Это выражение для x**y в соответствии с вышеозначенными пятью инструкциями можно представить как композицию функций в таком виде:

(3) f(z)=2**z,

(4) g(x,y)=y*log2(x),

(5) xy =f(g(x,y)).

Так как вычислить f(z) в одно действие невозможно, приходится считать так:

(6) f(z)=2**z=2**(trunc(z)+(z-trunc(z)))=(2**trunc(z)) * (2**(z-trunc(z))).

Формулы (4)-(6) естественно выражаются таким ассемблерным кодом:

;Во-первых, вычисляем z=y*log2(x):

fld y ;Загружаем основание и показатель степени

fld x

fyl2x ;Стек FPU теперь содержит: ST(0)=z

;Теперь считаем 2**z:

fld st(0) ;Создаем еще одну копию z

frndint ;Округляем

fsubr st(0),st(1) ;ST(1)=z, ST(0)=z-trunc(z)

f2xm1 ;ST(1)=z, ST(0)=2**(z-trunc(z))-1

fld1

faddp ;ST(1)=z, ST(0)=2**(z-trunc(z))

fscale ;ST(1)=z, ST(0)=(2**trunc(z))*(2**(z-trunc(z)))=2**t

fxch st(1)

fstp st ;Результат остается на вершине стека ST(0)ПРЕДУПРЕЖДЕНИЕ

Перед выполнением этого фрагмента кода нужно убедиться, что биты управления округлением в слове управления FPU установлены в режим округления к нулю. В Delphi это проще всего сделать при помощи функции SetRoundMode (модуль Math):

SetRoundMode(rmTruncate);

ПРИМЕЧАНИЕ

Так как на процессорах Intel Pentium IV последовательное многократное переключение между двумя (но не более) состояниями слова управления FPU выполняется гораздо быстрее, чем на ранних моделях, можно рассчитывать, что даже в тех ситуациях, когда придется перемежать вызов этого фрагмента кода с действиями, требующими иного режима округления, при работе на современной технике это не приведет к чрезмерным дополнительным временным затратам. Подробности см., например, в [3].Полный код работоспособной функции на Object Pascal выглядит так:

function _Power(const x,y:FLOATTYPE):FLOATTYPE; //x>0!

asm

fld y

fld x

fyl2x

fld st(0)

frndint

fsubr st(0),st(1)

f2xm1

fld1

faddp

fscale

fxch st(1)

fstp st

end;СОВЕТ

Имеет смысл создать перегруженные версии функции для различных типов аргументов FLOATTYPE, так как на практике часто главным недостатком встроенной функции является то, что она (как и все вызываемые ею функции) принимает в качестве аргументов действительные числа типа Extended, что приводит к весьма существенным затратам на конвертирование форматов при загрузке в стек FPU.Чего мы достигли?

Эксперименты показали, что предложенный вариант функции возведения в степень повышает точность вычислений на один-два знака после запятой. Так как автору было несколько лень писать медленный код для сверхточного возведения в степень с целью проверки точности предложенного алгоритма, то эксперимент заключался в сравнении результатов со значением, получающемся в стандартном калькуляторе Windows. Если верить его справочной службе, вычисления в нем производятся с точностью до 32 десятичных знаков после запятой, что позволяет полагаться на него как на источник эталонных значений.

К сожалению, выигрыш в скорости абсолютно не ощущается. Это вполне объяснимо: согласно приложению C (“IA-32 Instruction Latency and Throughput”) документа [3], из всего этого фрагмента основная вычислительная нагрузка ложится на трансцендентные (ответственность за не вполне корректное применение термина ложится не на меня, а на господ из Intel) операции, а именно FYL2X, FRNDINT, F2XM1 и FSCALE. Количество же этих операций в предложенном алгоритме и их общее число в реализации функций ln(x) и exp(x) в RTL Delphi одинаково.

Конечно, хотелось бы увеличить и скорость вычислений. Но мир не идеален, и за это придется расплачиваться все той же точностью. Как правило, в каждой ситуации существует предел допустимых погрешностей при расчетах. В иллюстративных целях я задался максимальной допустимой относительной погрешностью 0,0001=0,1%. В действительности, как будет видно из графиков относительной погрешности, удалось достичь еще большей точности.

Дальнейшие наши действия должны состоять в том, чтобы исключить трансцендентные математические операции. Ясно, что всякое представление в виде конечной композиции элементарных арифметических операций некоторой функции, неразложимой в такую композицию, является приближением исходной функции. То есть задача ставится так: нужно приблизить используемые трансцендентные функции композициями элементарных операций, оставаясь при этом в допустимых для погрешности пределах.

Аппроксимация функции 2x

Эта мера позволит нам избавиться сразу и от длительной F2XM1, и от выполняющейся ненамного быстрее FSCALE.

Существует бесконечное множество способов приблизить функцию f(x). Один из наиболее простых в вычислительном плане подбор подходящего по точности многочлена g(x)=anxn+an-1xn-1+...+a1x+a0. Его коэффициенты могут быть постоянны, а могут некоторым образом зависеть от x. В первом случае коэффициенты легко найти методом наименьших квадратов, взяв значения исходной функции в нескольких точках и подобрав коэффициенты так, чтобы в этих точках многочлен принимал значения, как можно более близкие к значениям функции (подробное описание полиномиальной аппроксимации функций и метода наименьших квадратов можно найти в книгах, посвященных курсам вычислительной математики или обработке экспериментальных данных). Простота метода оборачивается существенным недостатком: он подчас неплох для выявления качественных тенденций, но плохо отражает исходную функцию количественно, причем, как правило, погрешность растет с уменьшением степени многочлена n, а скорость вычисления g(x) с ростом n падает.

Достойная альтернатива, позволяющая достаточно точно приближать гладкие кривые, такие, как y=2**x, - аппроксимация сплайнами. Говоря простым языком (возможно, чересчур простым пусть меня извинят специалисты), сплайн это кривая, моделирующая форму, принимаемую упругим стержнем, деформированным путем закрепления в заданных точках. Она проходит точно через заданные точки, подчиняясь при этом некоторым дополнительным условиям, в частности, условию непрерывности второй производной. Существуют различные виды сплайнов. В этой работе достаточно практично использование кубических сплайнов. Кубический сплайн на кажд

Похожие работы

1 2 3 > >>