Устройство измерения интервала времени спадающего напряжения

Развитие цифровой электроники положило началу созданию первых простейших вычислительных устройств, что впоследствии привело к появлению компьютеров. В нынешнее время

Устройство измерения интервала времени спадающего напряжения

Курсовой проект

Радиоэлектроника

Другие курсовые по предмету

Радиоэлектроника

Сдать работу со 100% гаранией

Курсовая работа

по курсу «Цифровая электроника»

Устройство измерения интервала времени спадающего напряжения

ВВЕДЕНИЕ

Интервал длительности, мс

0,01 – 10

Амплитуда входного сигнала, В

14

Нижний уровень напряжения, В

3

Верхний уровень напряжения, В

12

Погрешность, %

0,8

Интервал между измерениями, сек

1 – 9

Тип индикатора

ЖКИ

Задание выдано 15 октября 2015 года

Защита КР – до 18 декабря 2015 года

Развитие цифровой электроники положило началу созданию первых простейших вычислительных устройств, что впоследствии привело к появлению компьютеров. В нынешнее время цифровые устройства всё более вытесняют аналоговые, поскольку имеют меньшую потребляемую мощность, массу размер и другие эксплуатационные параметры. Ярким пример являются цифровые вольтметры и амперметр, в которых магнитоэлектрический механизм заменён на несколько интегральных схем, реализующих измерение.

Основной носитель информации в аналитических приборах является электрический сигнал – цифровой или аналоговый. Информация заложена в изменение амплитуды, её скорости нарастания и убывания, частоты фазы и т.д. Контролирую, как будут вести себя перечисленные параметры, можно судить об изменениях в какой либо физической величине. Тема моей курсовой работы связана с разработкой схемы, которая будет измерять время спада напряжения линейно изменяющегося сигнала.

Таким образом, получив данные о времени, их можно использовать для дальнейшего анализа, в ходе которого можно определить с помощью математического дифференцирования скорость изменения данного сигнала. Таким способом можно обрабатывать процессы, в которых при воздействии на объект (датчик) происходит переход из одного установившегося состояния в другое. Как примером использования такого устройства является контроль концентрации примеси в полупроводнике. Если освещать полупроводник светом постоянной интенсивности, будет возникать разность потенциалов, которая зависит от концентрации, и измеряя как меняется потенциал, можно измерять концентрацию примесей.

1. ОБЗОР СУЩЕСТВУЮЩИХ УСТРОЙСТВ

Изобретение относится к области измерения физических величин путем преобразования их в электрические величины, например в частоту переменного тока, преобразования ее в последовательность импульсов и их подсчета, в частности к модификации основных электрических элементов, приспособленных для использования в электрических измерительных приборах, к конструктивным сопряжениям таких элементов с этими приборами, а также к конструктивным соединениям электрических измерительных приборов с электронными устройствами общего назначения, например с устройствами для подсчета импульсов, и представления измеряемых электрических переменных величин в цифровом виде [1].

В настоящее время в технике измерений различных физических величин, таких как температура, освещение различного спектрального диапазона, постоянное магнитное поле, механическая деформация, состав газовой среды и т.п. , широко используются цифровые измерительные приборы с первичными преобразователями (датчиками), выходным параметром которых является частота переменного тока (Новицкий П.В., Кнорринг В.Г., Гужников B.C. Цифровые приборы с частотными датчиками. М., "Энергия", 1990). Использование таких датчиков позволяет существенно упростить их согласование с измерительными системами и устранить ряд конструктивных трудностей. Так, показания датчиков не зависят от сопротивления подводящих проводов, возможно эффективное применение фильтрации сигнала, не требуется прецизионных высокостабильных без дрейфовых усилителей постоянного тока, упрощается преобразование выходного сигнала датчиков в цифровой код (период - код).

Известен цифровой прибор (авт.свид. СССР N 1068389, МКИ G 01 K 7/32), содержащий первичный преобразователь с частотным выходом, подключенный ко входу ключа, управляющие входы которого соединены с формирователем интервала измерения и блоком управления, выходы которого подключены к установочным входам триггера знака и реверсивного счетчика, генератор опорной частоты, подключенный ко второму входу ключа, выход которого подключен к первому входу схемы ИЛИ, выход которой подключен ко входу реверсивного счетчика, к выходу которого подключен ждущий мультивибратор, первый выход которого подключен к счетному входу триггера, выход которого соединен со входом схемы индикации знака и на вход направления счета счетчика, выход которого соединен с цифровым индикатором, выходы блока управления подключены к дополнительным входам схем ИЛИ, реверсивного счетчика и триггера.

Основным недостатком этого цифрового прибора является сложность схемы и жесткие требования на параметры входных импульсов (скважность) и низкое быстродействие, обусловленное его структурой построения.

Наиболее близким к предлагаемому изобретению по технической сущности является цифровой прибор (авт.свид. СССР N 1107009, МКИ G 01 K 7/32), содержащий первичный преобразователь с частотным выходом, генератор опорной частоты, подключенный к формирователю временных интервалов, счетчик результата измерения с цифровым индикатором, первый триггер, первый вход которого соединен с выходом "нуль" счетчика результата измерения, а первый выход соединен с входом управления реверсом счетчика и через переключатель знака крутизны, соединенный с вторым выходом первого триггера, - с информационным входом второго триггера, выходы которого подключены к индикатору знака, а также распределитель импульсов, ключи, дополнительный триггер.

Недостатком этого цифрового прибора является сложность его схемы и низкое быстродействие, обусловленное наличием подготовительного этапа во временной диаграмме работы. Кроме того, этот цифровой прибор предназначен для работы только с частотными датчиками температуры.

Цель изобретения - повышение быстродействия, упрощение схемного решения и расширение функциональных возможностей цифрового прибора.

Поставленная цель достигается тем, что, в отличие от известного цифрового прибора, содержащего первичный преобразователь с частотным выходом, генератор опорной частоты, подключенный к формирователю временных интервалов, счетчик результата измерения с цифровым индикатором, первый триггер, первый вход которого соединен с выходом "нуль" счетчика результата измерения, а первый выход соединен с входом управления реверсом счетчика и через переключатель знака крутизны, соединенный со вторым выходом первого триггера, - с информационным входом второго триггера, выходы которого подключены к индикатору знака, в заявляемом техническом решении введены синхронный счетчик результата измерения, синхронный регистр памяти и синхронный счетчик формирователя временных интервалов, выход которого соединен с его входом предустановки и со входом предустановки синхронного счетчика результата измерения, со входами синхронизации синхронного регистра памяти и триггера знака и входом установки триггера направления счета, и синхронный счетчик результата измерения, счетный вход которого соединен с выходом первичного измерительного преобразователя с частотным выходом, а выход - со входом регистра памяти, выход которого соединен с индикатором результата измерения, сигнал с выхода триггера направления счета поступает на вход направления счета счетчика результата измерения.

На чертеже приведена структурная схема цифрового прибора. Цифровой прибор содержит первичный преобразователь с частотным выходом 1, счетчик результата измерения 2, включающий в себя синхронный реверсивный счетчик 3 с синхронной предустановкой. синхронный регистр памяти 4, дешифратор 5 с цифровым индикатором, триггер направления счета 6, триггер знака 7, дешифратор индикатора знака 8, переключатель знака крутизны 9, генератор опорной частоты 10, синхронный счетчик формирования временных интервалов 11 с синхронной предустановкой.

Частота следования импульсов f на выходе первичного преобразователя в зависимости от регистрируемой физической величины x определяется выражением частотный волна калибровка электрический

f=ax+b,

где a – крутизна частотной характеристики первичного

Рисунок 1 – Структурная схема цифрового прибора преобразователя; b - свободный член (значение частоты f при входной физической величине x, равной нулю).

В качестве первичного преобразователя, например, состава газовой среды может быть применен частотный датчик на основе рекомбинационных волн (авт. свид. СССР N 1602189, МКИ G 01 N 27/12), построенный по дифференциальной автогенераторной схеме. В этом случае один канал является опорным и отрабатывает изменение параметров окружающей среды, а второй - является измерительным. На выходе такого датчика при наличии регистрируемой физической величины (в данном случае концентрации частиц газа - водорода) появляется разностный частотный сигнал. Он является входным для электронной части цифрового прибора.

В качестве материала для датчика на основе рекомбинационных волн использован кремний, содержащий мелкую донорную примесь, например фосфор или мышьяк с концентрацией Nd, и глубокий двойной акцептор - цинк - с концентрацией NA, при выполнении следующего соотношения между ними , причем отношение концентраций электронов и дырок в кремнии менее отношения их времен жизни . B датчике использовано сенсорное покрытие из металла платиновой группы, в частности палладия, а расстояние между омическими контактами не превышает пяти диффузионных длин неосновных носителей заряда (дырок).

Частотный датчик по разностной автогенераторной схеме может быть выполнен и на основе линии задержки поверхностных акустических волн (A.D Amico, A. Palma and E.Verona. Proc.IEEE Ultrasonic Symp., CA, U.S.A., 1982, p. 312). В качестве материала звукопровода такого датчика мы предлагаем использовать LiNbO3. Такой дат

Похожие работы

1 2 3 4 5 > >>