Земельно-кадастровые и геодезические работы для целей строительства автомобильной дороги общего пользования в г. Самара (ул. Арена 2018 от Волжского шоссе до ул. Демократической)

Законодательство Российской Федерации, регулирующее земельно-имущественные отношения, в настоящее время находится в стадии реформирования. Осуществляется как юридическое закрепление прав гражданина

Земельно-кадастровые и геодезические работы для целей строительства автомобильной дороги общего пользования в г. Самара (ул. Арена 2018 от Волжского шоссе до ул. Демократической)

Дипломная работа

Геодезия и Геология

Другие дипломы по предмету

Геодезия и Геология

Сдать работу со 100% гаранией
рудование и технологии для выполнения различных видов работ, инженерно-геодезических изысканий.

Рассматривая развитие электронного и оптического геодезического оборудования необходимо отметить, что прогресс быстро идет вперед. Совсем не давно геодезисты не могли предположить, что существует функциональное геодезическое оборудование, которое позволяет выполнять измерения - быстро, точно, надежно.

Появление электронных тахеометров, электронных теодолитов, электронных нивелиров, лазерных нивелиров, лазерных дальномеров, GPS приёмников - значительно облегчило работу инженеров-геодезистов, позволив им повысить производительность и точность выполняемых работ при использовании нового геодезического оборудования.

Развитие безотражательных роботизированных технологий измерений, появление трехсистемных (GPS, ГЛОНАСС, Galileo) приемников спутниковых сигналов геодезического класса точности будут определять тенденцию развития геодезического оборудования в ближайшие годы не только в нашей стране, но и в мире.

Тахеометры

На сегодняшний день на рынке электронных тахеометров существует широкий спектр приборов, отличающихся как по цене, так и по точностным характеристикам и выполняемым функциям. Все тахеометры можно разделить на три основные группы:

1. Простейшие электронные тахеометры. Это самые простые по выполняемым функциям электронные тахеометры. Запись данных производится, как правило, во внутреннюю память (если такая существует) или на внешний накопитель. Производят самые простые функции измерений и вычисления (горизонтальное проложение, превышение). Угловая точность таких приборов находится в пределах 5" - 6", линейная около 3 - 5 мм. Дальность измерения расстояния не превышает 1100 - 1500 метров по одной призме.

2. Ко второму типу электронных тахеометров относятся приборы среднего класса (электронные тахеометры Leica, Sokkia, Trimble). Эти тахеометры несколько дороже, но получили наиболее широкое распространение. Они имеют встроенное программное обеспечение для производства практически всего спектра геодезических работ (развитие геодезических сетей, съемка и вынос в натуру, решение задач координатной геометрии: прямая и обратная геодезическая задача, расчет площадей, вычисление засечек). Угловая точность у таких приборов может быть от 1" до 5" в зависимости от класса точности.

3. К третьему типу можно отнести электронные тахеометры, оснащенные сервоприводом, что позволяет выполнять роботизированные измерения. Эти приборы могут самостоятельно наводиться на специальный активный отражатель и производить измерения. В дополнение прибор с сервоприводом может оснащаться специальной системой управления по радио, при этом съемку может производить только один человек, находясь непосредственно на измеряемой точке. Подобная схема съемки увеличивает производительность проведения съемочных работ примерно на 80% процентов. Если прибор с сервоприводом имеет безотражательный дальномер, то получаете систему для съемок при проведении туннельных работ, съемки фасадов зданий, съемки карьеров, съемки поверхности дорог и других площадных объектов для построения ЦММ с высокой степенью точностью. Также роботизированные системы могут быть использованы для слежения за деформациями объектов, съемки движущихся объектов и т.д.

В качестве примера рассмотрим тахеометр SOKKIA SET 530R. Внешний вид прибора представлен на рисунке 1.

Рисунок 2. Электронный тахеометр Sokkia SET 530R

Электронные тахеометры Sokkia SET 530R, оборудованные новым цифровым дальномером, позволяют измерять расстояния без использования отражателей, позволяет выполнять измерения на точки, на которые невозможно или опасно устанавливать отражатель. Узкий видимый лазерный луч имеет малый диаметр, поэтому измерения сквозь препятствия (листву, деревья, заборы) стали как никогда простыми. Переключение режима работы "без отражателя" - "призма" - "пленка" осуществляется одной кнопкой. Питание электронного тахеометра осуществляется от Li-Ion аккумулятора (вес - около 100 гр.). Аккумуляторы можно приобрести в магазинах бытовой электроники. Управление электронным тахеометром осуществляется 15 клавишами. При необходимости быстрого ввода имен точек и координат можно использовать беспроводную клавиатуру SF14, имеющую 37 клавиш.

Возможность настройки пользователем раскладки клавиатуры позволяет присвоить нужное значение любой программной клавише. Предусмотрено измерение и сохранение данных нажатием одной кнопки. Объем внутренней памяти 10 000 точек. В дополнение к внутренней памяти возможна установка считывателя SCRC2 для Compact Flash карт. Внутреннее программное обеспечение: определение координат, вынос в натуру координат и линий, обратная засечка, высота недоступного объекта, определение угла методом повторений, определение недоступного расстояния, проекция точки на линию, вычисление площади.

Технические характеристики:

Точность измерения углов - 5"

Увеличение, крат - 30

Компенсатор / диапазон работы компенсаторадвухосевой, - ±3'

Минимальное расстояние фокусирования, м - 1,3

Минимальное измеряемое расстояние, - м1,3

Дальность измерения расстояний на одну призму, м - 5000

Дальность измерения расстояний на три призмы, м - 6000

Дальность измерения расстояний без отражателя, м - 150

Точность измерения расстояний на призму, мм - ±(2 + 2 х 10-6 х D)

Точность измерения расстояний без отражателя, мм - ±(3 + 2 х 10-6 х D)

Время измерения расстояний, сек - 1,3

Клавиатурас двух сторон, - 15 клавиш

ДисплейЖК, - 192 х 80 точек

Количество строк / символов в строке - 6 строк по 20 символов

Защита от пыли и воды - IP66

Внутренняя памятьпримерно 10000 точек

Рабочая температура, °Сот -20 до +50

Время работы от одного аккумулятора, часов5

Время заряда одного аккумулятора, часов2

Вес, кг5,3

GPS оборудование

Обеспечивая многие практические потребности экономики и обороны страны, существующие наземные геодезические методы по точности, оперативности, экономической эффективности не соответствуют некоторым крайне важным современным требованиям науки и практики. В частности требованиям, возникающим при крупномасштабных съемках городов и поселков, при строительных изысканиях, при геодезическом обеспечении обороны страны, решении задач морской и авиационной навигации и изучении природной среды.

Эти задачи на современном уровне требований могут быть решены только с использованием спутниковых методов. Ядром современных геодезических спутниковых методов являются технологии оперативных координатных определений (в том числе и высотных), основанные на использовании глобальных навигационных спутниковых систем ГЛОНАСС и GPS

Ведение геодезических работ с помощью GPS увеличивает производительность труда в полевых условиях. При этом сантиметровый уровень точности определения координат достигается гораздо быстрее, чем при использовании традиционных геодезических инструментов. GPS позволяет вести геодезические работы круглосуточно, в любую погоду, а также, при отсутствии прямой видимости между точками.

В настоящее время в околоземном космическом пространстве находится 24 спутника (SVs) NAVSTAR. Период обращения спутников составляет двенадцать часов, а большая полуось приблизительно равна 20200 км. Спутники сгруппированы на шести орбитах, с наклонениями в 55 градусов к экватору.

Каждый спутник передает радиосигналы, которые имеют уникальные идентификационные коды. Высокоточные атомные часы на борту спутников управляют генерацией этих сигналов и кодов.

Каждый спутник передает два уникальных кода. Первый и более простой код называется C/А (грубым) кодом. Второй код называется P (точным) кодом. Этими кодами модулируются две несущих волны L1 и L2. L1 несет C/А и Р-код, а L2 несёт только Р - код.

GPS приёмники подразделяются на одночастотные и двухчастотные. Одночастотные приёмники принимают только несущую L1, а двухчастотные и L1 и L2.

Координаты вычисляются методом трилатерации после определения дальности до каждого видимого спутника. Дальности определяются по коду или фазе несущей.

Между генерацией кода в спутнике и приёмом его GPS антенной проходит определённый период времени. Кодовые измерения позволяют определить этот промежуток времени и умножив его на скорость света, мы получим дальность до спутника.

GPS приёмники геодезического класса измеряют фазу в пределах цикла несущей. Длины волн L1 и L2 известны, поэтому дальности до спутников можно определить, добавив фазовый домер к общему числу длин волн между спутником и антенной.

Определение полного числа циклов несущей (длин волн) между антенной и спутником называется разрешением неоднозначности - поиском целого значения числа длин волн. Для измерений в режиме с постобработкой (РР), который используется для определения местоположения с точностью на уровне сантиметра, это целое значение определяется во время обработки на компьютере. Для измерений в реальном времени, которые используются для определения местоположения с точностью на уровне сантиметра, это целое значение определяется в течение процесса называемого инициализацией

Для геодезических GPS измерений необходимо одновременное наблюдение одних и тех же четырёх (или более) спутников, по крайней мере, двумя GPS приёмниками (рисунок 2).

Рисунок 3. Определение пространственных координат при помощи 4 спутников

Хотя имеется возможность использовать и более двух приёмников, мы ограничимся рассмотрением использования лишь двух: базовый приёмник и приёмник - ровер.

Базовый приёмник в течение всего процесса измерений располагается на пункте геодезической основы с известными координатами. Ровер перемещается по определяемым точкам или участвует в процессе выноса точек в натуру. Результатом объединения данных, полученных этими двумя приёмник

Похожие работы

<< < 1 2 3 4 5 6 7 8 9 > >>