Экологические последствия структурно-вещественных преобразований отвальных пород терриконов

Окисление и горение пород сопровождается выбросами широкого спектра летучих компонентов, которые выделяются из породной массы, обогащенной углистым веществом. Основным компонентом

Экологические последствия структурно-вещественных преобразований отвальных пород терриконов

Статья

Экология

Другие статьи по предмету

Экология

Сдать работу со 100% гаранией

Экологические последствия структурно-вещественных преобразований отвальных пород терриконов

Силин А. А., Выборов С. Г., Проскурня Ю. А., Донецкий Национальный Технический Университет

Терриконы являются неотъемлемой частью ландшафта больших и малых городов Донбасса. Только в Донецке их количество по разным источникам составляет от 120 до 138. Около 100 породных отвалов являются недействующими, из них только 25 считаются горящими. Из 32 действующих породных отвалов 28 - горящие. Высота породных отвалов Донецка колеблется в пределах от 8 м до 126, 6 м.

Породы, идущие в отвал, образуются за счет проходки выработок (52%) и их ремонта (48%). Такие "пустые" породы складируются вблизи стволов шахт в виде терриконов высотой до 60-80 м и отвалов хребтовой формы (в сумме 92%), реже - плоских отвалов (8%). Средний литологический состав отвалов отражает состав угленосной толщи. Это ар¬гиллиты (60-80%), алевролиты (10-30%), песчаники (4-10%), изве¬стняки (редко до 6%, обычно меньше), а также значительные примеси угля (6-20%). Кроме того, отвалы содержат существенную долю техно¬генных материалов - деревянной крепи, металлических изделий, проводов и пр. При отсыпке отвалов происходит гравитационная сегрегация породы, т.е. разделение отсыпаемых пород по размерам обломков и удельному весу. При этом крупные и тяжелые обломки концентрируются у подножья отвалов, а углистое вещество распределяется неравномерно. Наименьшую зольность имеют породы в средней по высоте части отвала, к вершине и основанию она повышается. Отвальная масса изученных шахтных терриконов имеет зольность в пределах 57-99%, составляя в среднем 88, 5%. Влажность изменяется от 0, 2% до 11, 7%, составляя в среднем 3, 4%. Содержание общей серы в отвалах колеблется от 0, 01% до 10, 9%. В составе общей серы преобладает сера сульфидная (84%) [1].

Попадая в терриконы, породы карбона испытывают значительные преобразования. Это связано с процессами выветривания, когда скальные, прочные породы разрушаются и превращаются в полурыхлые и рыхлые. Выветривание пород сопровождается изменением их минерального и химического состава. Значительная часть компонентов пород выщелачивается водными растворами и мигрирует в окружающую среду, локализуясь на различных барьерах в почво-грунтах, растительном покрове, в грунтах зоны аэрации и в водовмещающих породах.

Наряду с выветриванием, которое распространено во внешней части терриконов, внутри них создаются благоприятные условия для окисления и последующего возгорания. Ведущая роль при этом принадлежит деятельности микроорганизмов. Окисление сульфидной серы осуществляется тионовыми бактериями. Они представляют собой обычно автотрофные микроорганизмы, использующие свободную СО2 на построении своего тела и получающие энергию при окислении серы и ее восстановленных продуктов. Изучение условий развития микроорганизмов в зонах окисления сульфидных месторождений установило их устойчивость при температурах от 2 до 70о С, рН среды - от 1 до 8 [2]. При этом развитие бактерий протекает в условиях высокой влажности породной массы. Эти данные показывают, что микроорганизмы устойчивы в условиях кислой среды, так как при окислении сульфидов образуется серная кислота, однако не переносят высокие температуры. Поэтому микроорганизмы начинают процесс окисления, который сопровождается выделением тепла, и разогревают определенную зону, а собственно горение может протекать внутри террикона в благоприятных условиях при доступе достаточного количества кислорода, когда происходит возгорание органической части угля.

В подтверждение этих выводов говорит тот факт, что в пределах краевых частей терриконов существуют локальные очаги окисления, где существенного повышения температуры не отмечается, однако наблюдается выделение парообразной серной кислоты и налеты новообразованной сульфатной минерализации.

Окисление и горение пород сопровождается выбросами широкого спектра летучих компонентов, которые выделяются из породной массы, обогащенной углистым веществом. Основным компонентом выбросов является водяной пар, который образуется при испарении и возгонке попадающих в зону горения атмосферных осадков, а также при высвобождении поровой и связанной воды минералов и пород. Вода является минералообразующей средой для большей части новообразованных минералов: сульфатов, гидрокарбонатов, карбонатов, фосфатов, арсенатов и др. Горящие терриконы выделяют пары, в которых кроме воды содержаться: серная кислота (сульфат-ион), углекислота, двуокись азота (нитрат-ион). При недостатке кислорода в очагах горения в парогазовых выбросах содержаться сероводород, углеводороды, аммиак, оксид углерода. В верхних частях терриконов, куда проникают обогащенные кислородом инфильтрогенные воды, горение протекает в условиях избытка кислорода. В более глубоких зонах горения отмечается недостаток кислорода, окислительные процессы протекают в анаэробных условиях. Очаги горения являются источниками горячих минерализованных, химически-агрессивных, насыщенных микроэлементами водных флюидов. При выходе на поверхность часть компонентов флюидов, попадая в условия низких температур и обилия кислорода, выделяется в виде корочек, налетов, натечных, кристаллических, сферолитовых агрегатов новых минералов, среди которых преобладают сульфаты, сульфиды и окислы. Другая часть улетучивается в атмосферу, пополняя ее вредными веществами. Сам процесс горения и порожденные им химически агрессивные флюиды полностью преобразуют минеральный и химический состав первичной породной массы, как в очагах горения, так и по его периферии.

Вокруг очагов горения формируется своеобразная зональность, обусловленная перераспределением исходного вещественного состава. В процессе изысканий были выявлены в разных местах терриконов небольшие участки, где сохранились первичные рыхлые отвальные породы - различной формы и размеров куски аргиллитов, углистых аргиллитов, алевролитов и редко песчаников. Они выделяются по черному цвету породной массы.

Вокруг этих участков устанавливается пограничная зона замещения, проявленная в изменении первичного цвета пород до бурых, вишневых оттенков, на фоне которых развиваются сульфаты желтого цвета. Они пропитывают массу породы, образуют различные налеты, корочки, прожилки и вкрапленники.

Далее по направлению от участков первичных пород выделяется зона развития белой сульфатной минерализации, которая пропитывает окисленные кирпично-красные породы. За пределами этой зоны располагаются обширные участки окисленных пород кирпично-красного цвета без видимых признаков развития сульфатов. Мощность каждой из выделенных зон развития сульфатной минерализации зависит от размеров очага окисления и колеблется от первых десятков сантиметров до нескольких метров. Эти две зоны (желтая и белая) являются промежуточными между окисленными породами и первичными, они характеризуются неравновесными переходными условиями и контролируют процессы миграции и концентрации большей части макро- и микроэлементов (результаты лабораторных исследований проб приведены в таблицах 1, 2).

Поведение значительной части компонентов породной массы в процессе ее окисления имеет закономерный и вполне объяснимый характер. Так рост концентрации в окисленной породе по отношению к исходной устанавливается для следующих породообразующих компонентов: кремнезема (от 50, 21% до 54, 36%); глинозема (от 17, 73% до 20, 86%); Fe2O3 (от 6, 31% до 9, 43%); CaO (от 0, 93% до 1, 3%); Na2O (от 0, 93% до 1, 05%); SO3 (от 1, 93% до 3, 27%). Увеличивается почти в два раза концентрация водорастворимого (подвижного) сульфат-иона - SO42- (от 9796, 1 мг/кг до 17463, 7 мг/кг).

Табл. 1. Результаты лабораторных исследований проб

№ зоны№ пробы Описание минералого-петрографических особенностей отходов H2O-ППП *SiO2*Fe2O3*TiO2 *Al2O3*CaO*MgO*K2O*Na2O*SO3*S*сумма *115Исходная порода - уголь, углистые сланцы черного цвета 1, 9116, 7350, 216, 310, 9217, 730, 931, 552, 620, 931, 930, 0499, 88217 Перегоревший кирпично-красный аргиллит с налетами желтой сульфатной минерализации 1, 156, 3453, 5710, 661, 0318, 431, 311, 262, 541, 13, 890, 14100, 2316Перегоревший кирпично-красный аргиллит с налетами белой сульфатной минерализации 3, 312, 81447, 40, 9417, 971, 022, 72, 431, 59, 150, 16100414Выветрелые и перегоревшие аргиллиты кирпично-красного цвета 1, 064, 7154, 369, 431, 0620, 861, 31, 152, 381, 053, 270, 0699, 6 Примечания: * - Содержание в массовых долях на сухое вещество

Табл. 2. Результаты лабораторных исследований проб

№ зоны1234№ пробы 15171614Описание минералого-петрографических особенностей отходов Исходная порода - уголь, углистые сланцы черного цвета Перегоревший кирпично-красный аргиллит с налетами желтой сульфатной минерализации Перегоревший кирпично-красный аргиллит с налетами белой сульфатной минерализации Выветрелые и перегоревшие аргиллиты кирпично-красного цвета Нитраты, мг/кг 21, 616, 20, 057Сульфаты, мг/кг 9796, 116650, 291246, 517463, 7Хлориды, мг/кг 61, 340, 541, 420, 2Pb, мг/кг 2534, 317, 197, 1Cd, мг/кг 1, 92, 92, 42, 9As, мг/кг 4, 23, 81, 95, 5Hg, мг/кг 0, 060, 0350, 030, 1Cорг, %7, 710, 160, 670, 11Fe2O3, %8, 9710, 857, 549, 54Al2O3, %19, 5119, 3618, 2321, 1Sобщ, %0, 491, 413, 041, 49Cu, мг/кг 50337148Ni, мг/кг 47725152Cr, мг/кг 1021049785Zn, мг/кг 949310298V, мг/кг 949410586Sn, мг/кг 7, 24, 63, 26, 8W, мг/кг 2, 21, 81, 81, 8Co, мг/кг 18152422Mo, мг/кг 1, 51, 82, 22, 2Mn, мг/кг 715724986724Ag, мг/кг 0, 030, 030, 030, 03Ge, мг/кг 1, 51, 513Bi, мг/кг 221, 52 Для ряда микроэлементов также отмечается рост концентрации в окисленных породах: Pb (от 25 до 97, 1 мг/кг); Cd (от 1, 9 до 2, 9 мг/кг); Hg (от 0, 06 до 0, 1 мг/кг); As (от 4, 2 до 5, 5 мг/кг).

Рост концентрации кремнезема, глинозема и окислов железа обусловлен их практически неподвижным состоянием в процессе окисления. Эти компоненты не могут переходить в высокоминерализованный водный раствор, насыщенный сульфатами, поэтому их ко

Похожие работы

1 2 3 > >>