Буриданов осел и шредингеровская кошка

Великий немецкий философ Гегель сказал: "Ответ на вопросы, которые оставляет без ответа философия, заключается в том, что они должны быть

Буриданов осел и шредингеровская кошка

Статья

Математика и статистика

Другие статьи по предмету

Математика и статистика

Сдать работу со 100% гаранией
открытие корпускулярно- волнового дуализма. Грубо говоря, он первый показал, что в таких устройствах как дифракционная решетка свет проявляет свою волновую природу, а в таких, как фотоэлемент - корпускулярную. Конечно, это значит, что "на самом деле" свет не является ни волной, ни потоком частиц. В известной притче о слепцах, которые ощупывали слона с разных сторон и делали утверждения типа "Слон похож на змею" , "Слон похож на колонну", "Слон похож на веревку" (кому-то видимо подвернулся хвост) важно то, что слон - это не змея, не колонна и не веревка, а нечто отличное от них всех. Впоследствии выяснилось, что "корпускулярно-волновой дуализм" присущ и электронам, и нейтронам, и, видимо, всем микрообъектам. Электрон - это частица, так как никто, нигде, никогда не регистрировал 0,98 электрона, а всегда - или целый электрон с присущим ему зарядом, массой и другими характеристиками, или ничего. И электрон - это волна, так как при движении электронов в определенных условиях (скажем, при отражении от поверхности кристалла) наблюдаются типично волновые явления интерференции и дифракции. Значит, "на самом деле" это нечто третье. После ожесточенных споров в физическом сообществе победил приблизительно такой способ интерпретации всех этих чудес. Электрон - это частица. Но: в отличие от классической частицы в смысле Ньютона, он не движется по одной определенной траектории, он движется по всем траекториям сразу. Каждой такой траектории соответствует определенная "амплитуда вероятности" - некое комплексное число. Если просуммировать все такие числа для всех траекторий (ау, юные знатоки матанализа! Понимаете, что значит суммировать по траекториям?! То-то! Интересная штука теоретическая физика, правда?)...Так вот, если просуммировать по траекториям все амплитуды вероятности и посчитать квадрат модуля того, что получилось, мы найдем вероятность движения электрона из начальной точки в конечную за данное время. Что это значит? Допустим, электрон движется сквозь дырки в экране. При этом вероятность прохождения электрона через дырку А, рассчитанная таким способом, составила 0,05, через дырку Б - 0,10 и т.д. Тогда, если везде расставить счетчики, каждый из них будет регистрировать либо целый электрон, либо ничего, но при проведении большой серии однотипных опытов счетчик, поставленный у дырки А, сработает в 5 случаев, у дырки Б - в 10, и т.д. Сверх этого теория нам не может дать ничего, все, что мы можем найти - это вероятности различных процессов. Аналогично обстоит дело и в других процессах в микромире. Скажем, если период полураспада некоего радиоактивного элемента 1 сутки, это значит, что в образце, содержащем большое число ядер, приблизительно половина ядер распадется за сутки. Когда распадется данное конкретное ядро - мы не можем сказать принципиально.

Разумеется, в такой ситуации от лапласовского детерминизма не остается вообще ничего. Эта точка зрения (подтвержденная всеми до сих пор выполненными экспериментами, включая очень изощренные) означала такой сильный разрыв со всеми предшествующими традициями и господствующим стилем мышления, что многие великие физики, в том числе, сам Эйнштейн, а также Шредингер, написавший основной закон движения новой механики - уравнение Шредингера для "волновой функции" (отождествляемой с амплитудой вероятности нахождения электрона в данной точке) отказались принять ее как "окончательное решение вопроса". Их критика была очень конструктивной, а мысленные эксперименты, предлагаемые ими для опровержения новых взглядов, чрезвычайно способствовали прояснению ситуации.

Повседневная жизнь убеждает нас в том, что многие события происходят С достоверностью. Футбольный мяч, или артиллерийский снаряд, или искусственный спутник Земли движется не по всем траекториям сразу, а по вполне определенной траектории, которую можно рассчитать на основе законов Ньютона. На первый взгляд, это не противоречит новой физике. Дело в том, что "длина волны", соответствующая амплитуде вероятности движения частицы, обратно пропорциональна ее массе. Для макрообъектов это величина настолько малая, что волновые свойства просто ненаблюдаемы - длинные радиоволны огибают холм за счет явления дифракции, а УКВ отражаются от него как поток частиц. Классическая физика - это просто предельный случай квантовой для объектов большой массы, точно также как механика Ньютона - это предельный случай теории относительности для скоростей, много меньших скорости света.

Так вот, Шредингер в 1935 году предложил мысленный эксперимент, призванный показать, что ситуация намного хуже: новая физика в действительности ставит под сомнение детерминизм даже для макрообъектов! (В конце концов не забудем - интересует-то нас осел, а не электрон...). Итак, ситуация: в герметически закрытый ящик поместили кошку (со всеми системами жизнеобеспечения, запасом пищи и т.д.). В том же ящике находится жуткое устройство: ампула с синильной кислотой и молоточек, способный ее разбить под действием электрического сигнала. Сигнал возникает при срабатывании счетчика Гейгера на один радиоактивный распад (технически это возможно), и тут же поблизости есть ядро радиоактивного изотопа. Согласно квантовой механике, никто не может сказать, когда именно распадется ядро. Оно находится в квантовом состоянии, которое, как говорят, является суперпозицией (наложением) состояний распавшегося и нераспавшегося ядра. Тем самым, никто не может сказать (пока не вскроет ящик), жива кошка или нет. По всем законам квантовой механики, она находится в состоянии - суперпозиции состояний живой и мертвой кошки. Ситуация абсолютно такая же, как в опыте с прохождением электрона через две щели. Вскрытие ящика аналогично срабатыванию счетчика либо у щели А, либо у щели Б. Значит, если верна стандартная интерпретация квантовой механики, бегло изложенная выше, кошка находится в состояниях живой и мертвой одновременно. Н-да... Какая-то чепуха получилась...

В действительности дело обстоит еще серьезнее. Как разьяснил Нильс Бор в своем принципе дополнительности, само существование квантовой механики возможно лишь в меру существования классических объектов. В чем задача квантовой механики? Описывать движение микрообъектов. Но в каких терминах описывать? Амплитуда вероятности - это все очень хорошо, но амплитуда вероятности чего? Ну, скажем, амплитуда вероятности иметь определенное значение координаты в данный момент времени. Но у электрона нет координаты! Как можно говорить о координате того, что по своей природе способно двигаться сразу по всем траекториям? Так вот, чтобы вообще понимать, о чем мы говорим, мы должны постулировать существование классических объектов - измерительных приборов, которые в определенных условиях с достоверностью измеряют координату, импульс и другие классические характеристики. Скажем, при прохождении электронов через экран с дырками счетчики, установленные у каждой дырки, в совокупности представляют собой прибор, измеряющий координату электрона вдоль экрана. Если считать эти счетчики тоже квантовыми объектами, которые то ли сработают, то ли нет в соответствии с вероятностными законами - все окончательно запутывается, и утверждениям квантовой механики вообще невозможно придать никакого разумного смысла. По Бору, именно в этом и состоит природа корпускулярно- волнового дуализма: мы можем в данном конкретном эксперименте, выбирая подходящие приборы, измерять либо корпускулярные свойства объекта (скажем, координату), либо волновые (скажем, длину волны), но никогда не можем измерить и те, и другие свойства в одном эксперименте. Таким образом, корпускулярные и волновые свойства являются дополнительными.

В то же время, мысленный эксперимент Шредингера показывает, что большие размеры и масса прибора еще не гарантируют "классичности". Даже макрообъект может быть поставлен в такие условия, которые вроде бы проявляют его квантовую, вероятностную природу. Похоже, вместе с водой мы выплеснули и ребенка, перейдя из царства жуткого лапласовского детерминизма в царство полной анархии,

Где все зазря, и все не то, и все непрочно,

Который час - и то никто не знает точно....А. Галич.Вот мы и пришли к главному вопросу: почему в квантовом мире существуют классические объекты? Что обеспечивает достоверность некоторых (в действительности очень многих!) утверждений об окружающем нас мире? Ладно, пусть мы бессильны определить, какую именно охапку сена выберет Буриданов осел, но трудно представить его находящимся в суперпозиции состояний "жующий правую охапку" и "жующий левую охапку" (кстати, расстояние между ними может быть сколь угодно большим!).

Между прочим, замечание о том, становится ли человечество умнее (не образованнее, а именно умнее). Все эти рассуждения Бора о необходимости описывать квантовые объекты в классических терминах, то есть в терминах мира вокруг нас, с большим трудом воспринимались лучшими умами нашего, предположительно самого умного, времени. А вот что писал Св. Ефрем Сирин в 4 веке:

"Кто говорит, тот кроме имен, взятых с предметов видимых, ничем иным не может слушающим изобразить невидимого" .

Эта штука посильнее, чем "Электрон так же неисчерпаем, как и атом"!

Понятно теперь, почему мы должны описывать электрон в классических терминах волна - частица, хотя он не является ни тем, ни другим?

Вернемся, однако, к нашим зверушкам.

В действительности наиболее радикальным разрывом с прежними представлениями в квантовой механике является не само по себе использование вероятностей. Мы видели, что и в классической механике наши возможности точного решения задачи во многих случаях ограничены самой природой задачи. При этом использование вероятностного языка не только возможно, но и неизбежно. Однако, в классическом случае всегда складываются вероятности независимых событий. В квантовом же случае складываются амплитуды. Именно это и приводи

Лучшие

Похожие работы

< 1 2 3 >