Буриданов осел и шредингеровская кошка

Статья - Математика и статистика

Другие статьи по предмету Математика и статистика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



Буриданов осел и шредингеровская кошка

М. И. Кацнельсон

У знаменитого аргенитинского писателя Хорхе Борхеса есть произведение (жанр определить не берусь) - "Бестиарий", представляющее собой сборник заметок о различных вымышленных существах. Там, между прочим, рассказывается (школьники и преподаватели, внимание!) о некоем китайском мудреце, который, упорно трудясь, за три года изучил искусство убивать драконов при помощи колдовства. Однако это искусство ему так и не пригодилось, так как за всю последующую жизнь ему так почему-то и не встретился ни один дракон... Льщу себя надеждой, что знакомство с двумя упомянутыми в заглавии животными окажется, возможно, более поучительным и полезным.

Французский средневековый мыслитель (слово "схоласт" в новейшее время приобрело некий ненужный оценочный смысл) Буридан придумал замечательный мысленный эксперимент. Представим себе осла, стоящего в точке, равноудаленной от двух совершенно одинаковых охапок сена. Так как нет никаких причин, почему осел должен предпочесть правую (или левую) охапку, мы приходим к выводу, что осел не сможет сделать выбор и умрет от голода! (Знающие люди говорят, что исходно речь шла о собаке и, соответственно, о не столь вегетарианской еде, как сено, но в фольклор история вошла именно в таком варианте). Интуитивно ясно, что здесь что-то не так, и мы имеем дело с парадоксом. Эта забавная ситуация вобрала в себя массу возможностей порассуждать о спонтанно нарушенной симметрии, устойчивом и неустойчивом равновесии, флуктуациях, бифуркациях и прочих мудреных вещах. Пожалуй, самое важное, что она может заставить задуматься о детерминизме, предсказуемости поведения сложных систем (в данном случае ослов) и свободе воли (в данном случае опять же ослов). Я твердо уверен, как и многие другие люди, что все эти проблемы не могут быть решены в рамках одного лишь научного подхода, однако при размышлении о подобных философских проблемах небесполезно все же знать некоторые имеющие отношение к делу выводы и результаты современной физики. Итак, забудем временно об ограниченности чисто естественнонаучного взгляда на мир, и попробуем разобраться в ситуации, рассматривая осла, сено и прочие участвующие в эксперименте сущности как скопища ядер и электронов, подчиняющихся физическим законам. В состоянии ли мы на основании этих законов однозначно предсказать, какую охапку сена выберет осел?

С точки зрения ньютоновской механики дело обстоит следующим образом. В некий момент времени мы должны знать скорости и координаты всех частиц, из которых состоит наша система, что в принципе может быть достигнуто со сколь угодно высокой точностью. Мы должны также знать выражения для сил, действующих между двумя любыми частицами системы. Это тоже принципиально возможно - все такие силы в конечном счете сводятся к электромагнитным и гравитационным, а их законы мы знаем. В соответствии со вторым законом Ньютона, мы можем найти ускорения всех частиц в этот момент времени. Тогда, зная скорости, мы можем найти новые значения координат всех частиц через некоторый малый промежуток времени, а зная ускорения - скорости через этот промежуток. Повторить процедуру нужное число раз. Таким путем мы можем - в принципе! - знать состояние системы со сколь угодно высокой точностью в любой будущий момент времени. Более того, так как законы механики, электромагнетизма и гравитации допускают формально обращение знака времени, мы можем столь же детально восстановить и прошлое системы. Конечно, все это делается не совсем так, и у людей, знакомых с вычислительной математикой, от такого описания процедуры решения дифференциальных уравнений вполне может случиться истерический припадок, но принципиально здесь все верно! Вроде бы нет причин, почему при абсолютно точном знании координат и скоростей всех частиц системы в некоторый момент времени нам не восстановить со сколь угодно высокой точностью все ее прошлое и будущее. Великий французский математик, физик и астроном Пьер Лаплас в конце 18 века на основании приблизительно таких же рассуждений пришел к устрашающему выводу, что некое гипотетическое существо, знающее скорости и координаты всех частиц во Вселенной и умеющее делать без ошибок сколь угодно длинные выкладки, восстановит прошлое и правильно предскажет будущее всей Вселенной! Конечно, свобода воли при этом оказывается всего-навсего иллюзией.

Правильно ли это с чисто естественнонаучной точки зрения? На первый взгляд, ошибок в наших рассуждениях нет. В то же время, кое-что настораживает сразу. Ну, например, походя получившийся вывод об отсутствии принципиальных различий между описанием будущего и прошлого системы противоречит не только повседневному жизненному опыту, но и одному из самых надежно установленных законов природы - второму началу термодинамики. Так как я пишу для школьников, желающих узнать что-то сверх школьной программы, нет нужды детально обсуждать здесь проблемы, возникшие у Людвига Больцмана и других умных людей при попытке примирить второе начало термодинамики с законами механики. Все же стоит, пожалуй, нарушая хронологическую последовательность, упомянуть о некоторых не столь известных достижениях - уже во второй половине 20 века - в нашем понимании проблем предсказуемости и обратимости в рамках классической механики, тем более, что они имеют довольно непосредственное отношение к "проблеме Буриданова осла". Трудами многих ученых, в том числе замечательных российских математиков А. Колмогоров

s