Бозе-Эйнштейновский конденсат

Доклад - Физика

Другие доклады по предмету Физика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



ин фермион.

В качестве примера рассмотрим такие ячейки, или состояния, для электрона, вращающегося вокруг ядра атома. Электрон по законам квантовой механики не может обращаться по любой эллиптической орбите, для него существует только дискретный ряд разрешенных состояний движения. Наборы таких состояний, группируемые в соответствии с расстоянием от электрона до ядра, называются орбиталями. В первой орбитали имеются два состояния с разными моментами импульса и, следовательно, две разрешенные ячейки, а в более высоких орбиталях восемь и более ячеек.

Поскольку электрон относится к фермионам, в каждой ячейке может находиться только один электрон. Отсюда вытекают очень важные следствия вся химия, поскольку химические свойства веществ определяются взаимодействиями между соответствующими атомами. Если бы электроны были бозонами, то все электроны атома могли бы занимать одну и ту же орбиталь, соответствующую минимальной энергии. При этом свойства всего вещества во Вселенной были бы совершенно другими, и в том виде, в котором мы ее знаем, Вселенная была бы невозможна.

Все лептоны электрон, мюон, тау-лептон и соответствующие им нейтрино являются фермионами. То же можно сказать о кварках. Таким образом, все частицы, которые образуют вещество, основной наполнитель Вселенной, а также невидимые нейтрино, являются фермионами. Это весьма существенно: фермионы не могут совмещаться, так что то же самое относится к предметам материального мира.

В то же время все калибровочные частицы, которыми обмениваются взаимодействующие материальные частицы и которые создают поле сил являются бозонами, что тоже очень важно. Так, например, много фотонов могут находиться в одном состоянии, образуя магнитное поле вокруг магнита или электрическое поле вокруг электрического заряда. Благодаря этому же возможен лазер.

Спин. Различие между бозонами и фермионами связано с еще одной характеристикой элементарных частиц спином. Как это ни удивительно, но все фундаментальные частицы имеют собственный момент импульса или, проще говоря, вращаются вокруг своей оси. Момент импульса характеристика вращательного движения, так же как суммарный импульс поступательного. В любых взаимодействиях момент импульса и импульс сохраняются.

В микромире момент импульса квантуется, т.е. принимает дискретные значения. В подходящих единицах измерения лептоны и кварки имеют спин, равный 1/2, а калибровочные частицы спин, равный 1 (кроме гравитона, который экспериментально пока не наблюдался, а теоретически должен иметь спин, равный 2). Поскольку лептоны и кварки фермионы, а калибровочные частицы бозоны, можно предположить, что фермионность связана со спином 1/2, а бозонность со спином 1 (или 2). Действительно, и эксперимент, и теория подтверждают, что если у частицы полуцелый спин, то она фермион, а если целый то бозон

 

Спин электрона и принцип запрета Паули. В то время, когда формировались идеи квантовой механики, для объяснения характеристик линейчатых спектров атомов была выдвинута гипотеза спина электрона. Спектроскопия более высокого разрешения показала, что многие линии представляют собой дублеты, которые не удается объяснить, исходя из орбитального движения электронов. Особенно показательный пример дублет желтых линий натрия 589,0 и 589,6 нм, который четко разделяется даже простыми спектрометрическими приборами.

Для объяснения частого появления дублетов в линейчатых спектрах Дж.Уленбек (19001988) и С.Гаудсмит (19021978) выдвинули в 1925 предположение, что электрон имеет собственный момент импульса, или спин, т.е. его можно представить себе вращающимся вокруг собственной оси одновременно с вращением по орбите вокруг ядра, аналогично вращению Земли при ее движении вокруг Солнца. Спин характеризуется еще одним квантовым числом, s. Поскольку вектор спинового момента импульса имеет (2s + 1) различных ориентаций, а наблюдаемая кратность энергетических уровней равна двум, имеем (2s + 1) = 2, или s = 1/2. Проекции вектора s на некое выделенное направление (направление внешнего магнитного поля) характеризуются спиновым магнитным квантовым числом ms, которое может быть равно либо +1/2, либо -1/2. Вращающийся вокруг собственной оси электрон подобен крошечному магниту с магнитным моментом

В конечном итоге получается 4 независимых квантовых числа, характеризующих состояние электрона в атоме:

n главное квантовое число;
l орбитальное квантовое число;
ml орбитальное магнитное квантовое число;
ms спиновое магнитное квантовое число.

Хотя квантовая механика позволяет, если заданы квантовые числа, определить энергию состояния и пространственное распределение электронной плотности вероятностей (заменяющее орбиты в модели Бора), для фиксации числа электронов в каждом состоянии требуются дальнейшие предположения.

В 1925 В.Паули (19001958) сформулировал принцип запрета, который сразу внес ясность в очень многие атомные явления. Он предложил простое правило: в каждом отдельном квантовом состоянии может находиться только один электрон. Это означает, что набор чисел, отвечающих данным n, l и ml, зависит от n. Например, при n = 1 возможно лишь l = 0; следовательно, ml = 0 и единственное различие состояний связано с ms = +1/2 и -1/2. В таблице приведены возможности, отвечающие различным n. Отметим, что в первой оболочке (n = 1) имеются 2 элек

s