Билеты по математике

Зафиксируем любую точку M0(x0,y0,z0). Рассмотрим кривую проходящую через эту точку. Пусть уравнение этой кривой будет x=x(t) y=y(t) z=z(t) где

Билеты по математике

Вопросы

Математика и статистика

Другие вопросы по предмету

Математика и статистика

Сдать работу со 100% гаранией
на i-той частичной поверхности такую, что zi=f(xi;yi), т.е. Mi(xi;yi;z (xi;yi)). Так как частные производные p,q-непрерывны, то поверхность является гладкой и в каждой точке этой поверхности существует касательная плоскость. Проведем теперь касательную плоскость к поверхности в точке Mi. Построенное тело на обл. Di на этой плоскости Т вырежит некоторую площадку Ti. Eе площадь STi дает некоторое приближение для площади куска поверхности, который вырезается этом цилиндрическим телом. Аналогичным образом поступим с остальными областями D1,D2,…,Dn. В результате мы получим некоторое приближение для площади всей заданной поверхности. Пусть

n

n= STi

i=1

А тогда принято считать, что площадью поверхности является

n

S=lim n=lim STi ,

 i=1

где - наибольший из диаметров площадей Di.

Нетрудно показать, что такой предел будет равен

S=lim n= (1/cos )dx dy,

0 D

где - угол, образованный нормалью к поверхности с осью oz.

Доказательство:

Через i обозначим угол, который образует касательную плоскость с плоскостью xoy. В точке Mi проводим нормаль к поверхности. Получаем, что угол, образованный касательной плоскостью с плоскостью xoy равен углу, образованному нормалью к поверхности с осью oz. Площадь Di есть проекция плоскости Ti , которая лежит на касательной плоскости. А тогда SDi=STi*cos i .

А тогда получаем, что

n n n

n= STi= SDi / cos i = (1/cos i)*SDi .

i=1 i=1 i=1

Получили, что данная сумма является суммой Римена для такого двойного интеграла:

(1/cos )dx dy.

D

Получили , что площадь поверхности Q , заданной явным уравнением , вычисляется по такой формуле :

SQ= (1/cos )dx dy.

D

Если поверхность задана явным уравнением , то

cos =1/ (1+p2+q2 n)=1/(1+zx'2+zy'2 ).

В случае явного задания поверхности

SQ=(1+zx'2+zy'2)dx dy =(1+p2+q2)dx dy

D D

Если теперь поверхность Q задана параметрическими уравнениями

x=x(u,v)

y=y(u,v) (u,v)єG ,

z=z(u,v)

где функции x,y,z непрерывны со своими частными производными, то в этом случае площадь поверхности вычисляется по следующей формуле

SQ=(A2+B2+C2) du dv,

где А,B,C-есть раннее введенные функциональные определители.

8.Касательная пл-ть к пов-ти и её ур-е в случае явного и не явного задания пов-ти.

1) не явное. Пусть поверхность задаётся не явным уравнением F(x,y,z)=0. Эта функция непрерывна и имеет непрерывные частные производные.

 

Здесь рисунок.

 

Зафиксируем любую точку M0(x0,y0,z0). Рассмотрим кривую проходящую через эту точку. Пусть уравнение этой кривой будет x=x(t) y=y(t) z=z(t) где . Предположим что эти функции непрерывны и имеют непрерывные частные производные по t . Пусть т. M0 соответствует значению параметра t=t0 x0=x(t0) y0=y(t0) z0=z(t0). Т.е. M0(x(t0),y(t0),z(t0))=M0(x0,y0,z0) , т.к. кривая Г лежит на пов-ти, то она удовлетворяет уравнению поверхности т.е. F(x(t),y(t),z(t)) 0, берём производную . Посмотрим это рав-во в т.M0 т.е. t=t0 получим ; Введём обозначение через , а через , а так как то проведём через точку М0 любую кривую. из рассмотренных равенств заметим, что любые кривые на пов-ти, кот-е являются непрерывными , всегда будет выполнятся рав-во , а это рав-во показывает что вектор будет ортогонален к любому касательному вектору , кот-й проходит через эту точку М0, значить все касательные s лежат в одной плос-ти перпендикулярно к . Эту плос-ть состоящую из касательных векторов называют касательной плоскостью к поверхности в т. М0, а вектор наз нормальным вектором плоскости в т. М0. в случае не явно. Прямая проходящая через т. М0 и перпендикулярная к касательной плоскости поверхности называют нормалью поверхности. Но тогда ур-е прямой поверхности проходящую через т. М0: .

2) явно. пусть пов-ть задаётся явным ур-ем z=f(x,y), где (x,y)D f - ф-ция непрерывна и имеет непрерывные частные производные. ; ;

z-f(x,y)=0; F(x,y,z);

;;

;

; ;

это ур-е пов-ти.

 

Вопрос№11

Если пов-ть Р задана параметрич. ур-ями

(u,v) G

ф-ии x,y,z непрерывны с частными производными то поверхностный интеграл 1-го рода вычисл. С помощью интеграла двойного рода,взятого по обл. G по ф-ле:

Если пов-ть Р задается явным урав. Z=F(x,y)=z(x,y)

Где (x,y),причем ф-ия F-непрерыв. Со своими

Часными произв.,то поверхностный интегр.1-го рода

Вычисл.по ф-ле :

где P и Q соотв.часные произв.

Поверхн.интеграл 2-го рода

Криволин.интеграл 2-го рода:

Пусть задана двусторонняя пов-ть S и на верхн.

Стороне задана ф-ция U=F(x,y,z).Разобьем задан.

Повер.S непрерывн.кривыми на конечное число

Частичных поверх. S1,S2….Sn.Проэктир.эти поверх.

На XOY , -площадь прэкции повер.Si:

Если сущ.предел Lim n при не зависит

От способа дел.области на части и выбора точек Mi,

То его наз.повер.интегалом 2-го рода по поверхн.и

Обознач. :

Если же проэктировать пов-ть на другие плоскости ,то

Получится:

Пусть на пов-ти заданы три ф-ции P(x,y,z), Q(x,y,z)

R(x,y,z) тогда повер.интегр.2-го рода общего вида наз.

Пусть пов-ть S явл.гладкой поверхн.,такой что в каждой точке ее

Сущ. Пл-ть такая что в каждой т.пов-ти сущ.нормаль.Обозначим

Через ,,-углы ,которые образуют углы с осями OX,OY,OZ.

Тогда,как и для криволин.интеграла имеет место форма между повер.Интегр.1 и 2 рода:

Имеет место следующ.ф-ла замены перем.в пов.интегр.2-го.

Пусть пов-ть S задается своими парам.ур-ми:

ф-ции x,y,z непрерыв.и имеют непрер.частн. произв.Тогда:

Имеет место ф-ла Стакса ,связывающ.криволин.интеграл по контуру

Пов-ти с повер.интегралом 2-го по задан.пов-ти.

Пусть задана некоторая гладкая повер.S на верхн.стороне этой повер.

Заданы три ф-ии P(x,y,z),Q(x,y,z),R(x,y,z) непрерыв.и имеющ.непрер.

Частн.произв.по своим аргументам и L-контур повер.,проходящий в

Полож.направления.Тогда:

Билет №14

Поток вектора через поверхность

Пусть задана некоторая область(тело) ДR3 Пусть над этой областью определено поле вектора (М), МД , Аx ,Ay ,Az

Возьмем в области Д некоторую поверхность S обозначим через - нормальный вектор поверхности -единичный вектор , данного нормального вектора

где ,, -углы , которые образует нормаль с осями координат

Потоком вектора через заданную поверхность S (во внешнюю поверхность) называют следующий поверхностный интеграл 1-го рода

Проекция вектора на ось

Ап проекция вектора на вектор Ап =пр

А тогда поток вектора будет равен

Вопрос №16

Общий вид диф уравнения F(x, y, y)=0 y=f(x,y) (1).

Решением дифференциальное уравнение первого порядка называется всякая функция y=(x), которая будучи подставлена в данное уравнение обращает его в тождество.

(x)= f (x, (x));


Задача Коши для диф. уравнения 1 порядка.

Требуется найти решение диф. ур-я (1) удовлетворяющего следующему условию (2).

Теорема Коши.

Пусть задана на плоскости XOY некоторая обл. Д и задано диф. ур-е разрешённое относительно производной, тогда если функция f(x, y) и её частная производная непрерывны в обл. Д, и некоторая фиксированная точка обл. Д, то существует и единственная функция y=(x) являющаяся решением (1) и такая, которая в т.

принимает значение , т.е. удовлетворяющая заданному начальному условию .

Т.е. если существует решение диф. ур-я, то таких решений бесконечное множество.

График функции являющийся решением диф. ур-я принято называть интегральной кривой, процесс решение принято называть интегрированием.

Точкув плоскости XOY называют особой точкой диф. ур-я если в этой т. не выполняется условие теоремы Коши, т.е. особая т. это такая т. через которую может вообще не проходить ни одной интегральной кривой, либо проходить множество.

Решения диф. ур-я в каждой т. которого нарушается условие единственности из теоремы Коши, принято называть особым решением диф. ур-я. График особого решения называется особой кривой.

Определение общего решения диф. ур-я 1 порядка:

Функция y=(x, C), где С произвольная константа, называется общим решением диф. ур-я (1) если выполнены следующие условия:

Функция y=(x, C) является решением ур-я (1) при любом значении произвольной константы С;

Какова бы ни была т. Д найдётся такое значение произвольной константы , что функция y=(x,) удовлетворяет заданному начальному условию, т.е.

Частным решением данного диф. ур-я называется решение этого ур-я которое может быть получено из общего решения при некотором фиксированном значении произвольной константы С.

Определение:

Если решение диф. ур-я (1) может быть получено в виде, причём это ур-е не может быть явно разрешено относительно y, то функцию принято называть общим интегралом диф. ур-я (1), где С произвольная константа. Если решение получено в виде , где - явная константа частным интегралом диф. ур-

Похожие работы

<< < 1 2 3 4 5 > >>