Билеты по математике

Зафиксируем любую точку M0(x0,y0,z0). Рассмотрим кривую проходящую через эту точку. Пусть уравнение этой кривой будет x=x(t) y=y(t) z=z(t) где

Билеты по математике

Вопросы

Математика и статистика

Другие вопросы по предмету

Математика и статистика

Сдать работу со 100% гаранией
.

Получаем следующее неравенство mik f(;y) Mik yk y yk+1 Проинтегрируем его по отрезку [yk; yk+1]

Замечание: если же существует двойной интеграл и существует одномерный интеграл

то существует повторный

Если же функция f(x;y) такова, что существует двойной интеграл по области R, существуют оба од- номерных J(y) и Ί(x), то одновременно имеют место формулы (1) и (2)

Например: если f(x;y) непрерывна в области R, то, как известно двойной интеграл, и оба одномерных существуют, а значит, справедлива формула (3) и для вычисления двойного интеграла можно пользоваться одной из формул (1) или (2), а именно выбирая ту или иную, которая даёт более простое решение.

 

 

 

7.Независемость криволинейного интегр. от пути интегрирования. Теор.1 и 2.

Теорема 1. Пусть D ограниченная одно-связанная область плоскости XOY тогда что бы криволинейный интеграл - был равен 0 по любой замкнутой простой кривой , где P(x,y) и Q(x,y) - непрерывны и имеют непрерывные частные производные , необходимо и достаточно что бы во всех точках области D было (2).

Док-во

достаточность: Пусть во всех точках обл. D выполнено рав-во (2) и пусть Г произвольная простая замкнутая кривая, принадлежащая области. Обозначим через D область кот-ю ограничивает эта кривая Г. Применим теперь к этой области ф-лу Грина.

Необходимость: Криволинейный интеграл в любой замкнутой простой кривой существует область D=0. Покажем, что во всех точках области D выполняется рав-во (2). (это доказуется методом от противного). Пусть интеграл = нулю, а рав-во (2) не выполняется, по крайней мере, в одной точке , т.е. . Пусть, так что разность . Пусть тогда . Т.к. частные производные и непрерывны в области D, то непрерывна в этой области, а из непрерывности функций вытекает что ф-ция , то существует окрестность этой точки, принадлежащая области D, так что везде в этой окрестности для любой точки лежащей внутри кривой.

кот-я является границей нашей окрестности - множество чисел внутри . Применим к ф-лу Грина: . Полученное противоречие показывает, что не существует не одной точки где бы равенство (2) не выполнялось.

Теорема 2 Пусть D есть односвязная область плоскости XOY в этой области заданы две непрерывные функции D(x,y) и Q(x,y) имеющие непрерывные частные производные и ; чтоб криволинейный интеграл не зависел от пути интегрирования . Необходимо и достаточно чтоб выполнялось равенство (2).

Док. Не обход. Пусть криволинейный интеграл не зависит от пути интегрирования, а зависит от начальной и конечной точки пути интегрирования.

Возьмём в области D произвольно простую замкнутую кривую Г. На этой кривой т. А и т. В

Т.к. по условию криво-ный интеграл не зависит от пути интегрирования, то интеграл по кривым АmB=AnB

В силу 1-й теоремы должно выполнятся рав-во (2).

Док. Достат. Пусть выполняется рав-во (2) . Покажем, что криволенейный интеграл не зависит от пути интегрирования :

1-й случай. Берём две произвольные точки принадлежащие области D и соединяем эти точки непрерывными кривыми и , кот-е не имеют точек самопересечения.

Если эти кривые образуют простой замкнутый контур без самопересечения и т.к. выполняется рав-во (2), то интеграл поэтому замкнутому контуру обязан быть равен 0. , т.е. интеграл не зависит от кривой.

2-й случай. Пусть и имеют конечное число точек самопересечения

Будем двигаться от А к C1 в результате получили контур и . Аналогично Для всех остальных случаев.

3-й случай. Если кривые пересекаются на счётном множестве точек то интеграл по таким кривым тоже будут равны между собой ….счётное множество эквивалентное множеству натуральных чисел.9.Параметрические ур-я поа-ти, касательная плос-ть, нормаль, направляющие косинусы нормали.

Пусть поверхность задана параметрическими уравнениями :x=x(U,V) ; y=y(U,V); z=z(U,V) и функции x,y,z непрерывны и имеют непрерывные частные произвольные. Рассмотрим матрицу

На поверхности берём точки U0(x0,y0,z0) которая является образом (U0,V0) . Можно показать, что в этом случае уравнение касательной к плоскости поверхности имеет вид А(x-x0)+B(y-y0)+C(z-z0)=0 .Уравнение нормали поверхности . Далее введём направляющую. Пусть поверхность задана параметрическими уравнениями и

- угол образованный нормалью с направлением осью X

- угол образованный нормалью с направлением осью Y

- угол образованный нормалью с направлением осью Z,

cos cos cos - называют направляющими косинусами нормали. Для направляющих косинусов нормали имеет место формула:

, , . В знаменатели стоит двойной знак и всякий раз выбирают один из знаков в зависимости от направления нормали. В случае явного задания поверхности направляющие вычисляются , , .

Билет 12

Задача о вычислении массы пространств-го тела.

Пусть в трехмерном пространстве задано тело D, причем в точках этого тела определены некоторые массы и известна плотность распределения массы, кот. явл-ся ф-цией трех переменных U=(x,y,z).Разобьем это прост-ное тело некоторыми гладкими пов-ми на конечное число областей D1, D2,…,Dn. В каждой области Di произвол. выберем некот. точку () Di. Плотность массы в этой точке это iii. Будем считать, что ф-ция явл-ся непрерывной, а разбиение достат. мелким так, что значения ф-ции внутри области Di не слишком отличаються от значений ф-ции в выбранной точке. Т.е. будем считать, что в области Di плотность массы одна и та же и равна числу iii. Тогда очевидно масса, заключенная в обл. Di , будет равняться iiiV. Тогда приближенное значение массы для всей области равна iiiVi Пусть - наибольший из диаметров Di тых областей, а тогда масса , заключенная в области равна m=lim( iiiVi

Пусть теперь задано пространств. тело D. В точках этого тела определена ф-ция U=f(x,y,z). Разобьем это тело на конечное число Di тых (i=1,2,3,…). В каждой области Di выберем произвол. точку (xi,yi,zi) и составим интегральную

n= (xi,yi,zi) * Vi Если сущ. предел и он конечный и он не зависит от способа деления обл. D на части и выбора точек (xi,yi,zi) , то этот предел называют тройным интегралом по обл.D от ф-ции f(x,y,z)lim(n= f(x,y,z)dx dy dz Следовательноm=(x,y,z)dxdydz

Св-ва тройного интеграла аналогично св-м двойного интеграла 1) Всякая интегрируемая в обл. D ф-ция ограничена в этой области.

2) Могут быть построены суммы Дарбу

верх S= Mi * Vi низ s= mi * Vi

3) Необходимо и достаточное условие сущ. интеграла

lim( S-s)=0

4) Как и в случае двойного интеграла сущ. тройной интеграл от любой непрерывной ф-ции, заданной в обл. D. Однако тройной интеграл сущ. и в случае, когда ф-ция f(x,y,z) имеет разрывы 1-го рода на конечном числе пов-тей данного тела D.

5)Тройной интеграл обладает св-вами линейности и аддетивности

Dfdx = D1fdx + D2 , где D=D1D2

6)Если сущ. тройной интеграл от ф-ции f, то сущ. интеграл по модулю

и существует равенство

fdv

Если функция fв области D ограничена какими-то числами m f М , то для тройного интеграла справидливо неравенство

mVd dvM VD

7) Имеет место теорема о среднем , т.е. если функция (x,y,z) не-прерывная в области D , то справедливо равенство

dv (X0 , Yo , Z0) (X0 , Yo , Z0)D

Ввычесление тройного интеграла по параллепипеду .

1. Пусть функция (x , y ,z) задана на параллепипеде R a ,b ; c , d; e, f.

Обозначим через Gи D прямоугольника D c , d; e, f и a,b;c,d . Тогда если существует тройной интеграл по параллепипеду от функции (x,y,z) и существует для любого x из a,b двойной интеграл по прямоугольнику D

(x,y,z)dydz то существует

dv =dx(x,y,z)dydz

Если для ze,f (x,y,z)dxdy,то dv = dx(x,y,z)dydz = dxdy(x,y,z) . Если функция (x,y,z) непрерывна в области D,т.е. на параллепипеде , то все указаные ранее интеграмы существует и имеет

место вся большая формула и в последнемравенстве можно менять местами в случае непрерывности функции.

2. Пусть (x,y,z) задана в пространстве области G причем область G сверху ограниченная плоскостью z=z2(x,y) снизу z=z1(x,y),a c боков ограничена цилиндрической поверхностью образующая которой OZ. И пусть проекция этого тела на плоскость XOY есть некотокая область D .Тогда можно показать ,что тройной интеграл по пространственной области G может быть вычеслен по такой формуле

Продолжение №12

Если теперь обл. D будет иметь следующее строение. Пусть обл. D, кот. явл. проэкцией тела на пл-ть XOY, ограничена следующими линиями: отрезками прямых x=a и x=b , и кривыми y=1 (x) и y=2(x). Тогда тройной интеграл:

Вопрос №10

Пусть в пространстве задана поверхность Q, которая является гладкой и задана явным уравнением z = f(x;y), где (x;y)ЄD.

D является проэкцией поверхности Q на плоскость xoy. Будем считать f(x,y) непрерывная со своими частными производными



Требуется вычислить площадь S заданной поверхности. Разобьем область D непрерывными кривыми на конечное число частичных областей D1,D2,…,Dn. Возьмем в области Di т.(xi;yi) и построим цилиндрическое тело, в основании которого лежит область Di , а образующие параллельны оси oz. Это цилиндрическое тело вырежет на нашей поверхности Q некоторую i-тую площадку. Обозначим через Mi (xi;yi;zi) точку

Похожие работы

< 1 2 3 4 5 > >>