Бессилие от знания или может ли история помочь физикам?

Информация - История

Другие материалы по предмету История

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



езапно отправили в Москву на 6 месяцев, на повышение квалификации.

Рассуждать было некогда, семестр уже начинался, и после краткого инструктажа этого самого доцента я, обложившись всей существующей литературой, кинулся в этот омут, из которого мне не было суждено вынырнуть.

Любая геофизика, в том числе, и шахтная - на 90% сейсморазведка. Если открыть любой геофизический сборник или материалы какой-нибудь конференции - все сплошь сейсморазведка. Более того, примерно то же соотношение и в денежном соотношении: все страны, позволяющие себе роскошь содержать собственную геофизику, тратят на сейсморазведку более 90% всех геофизических денег. Так что и мне пришлось штудировать главным образом именно эту область знания.

Впрочем, эта область знания оказалась весьма специфической. Прежде всего, отсутствием соответствующих лабораторных работ. Их не было ни в наследстве, оставленном мне покинувшим нас штатным преподавателем, ни, как ни странно, на кафедре геофизики ЛГИ. Так что если по электроразведке, магниторазведке, радиоактивным методам и т.д. мы на лекциях анализировали задачи, смоделированные в лаборатории, то по сейсморазведке все ограничивалось моим говорением и трехэтажными формулами.

Это шло вразрез с моим радиотехническим воспитанием. Для радиофизиков ведь существует только один авторитетный человек, да и тот осциллограф. А если в слово геофизика вторая и бльшая его составляющая попала не случайно, то каждое ее утверждение должно наглядно иллюстрироваться реально существующим эффектом.

Идея сейсморазведки действительно элементарно проста. Именно поэтому она была описана Пуассоном в начале XIX века, еще за 100 лет до проведения первых практических измерений. Волновое уравнение, написанное им, позволило выйти на описание различных типов упругих волн. Но ведь для того, чтобы иметь отношение к физике, математическое уравнение, какое бы оно ни было красивое, должно содержать аргументы, которые могут быть определяемы в эксперименте. В данном случае, к сожалению, это оказалось не так. Аргументами в волновом уравнении, описывающем поле упругих колебаний, являются параметры движения колеблющихся частиц и/или давление в упругой волне. Ни то, ни другое определить в эксперименте даже на сегодняшний день нельзя, так как в Палате Мер и Весов не существует эталонов и соответствующих датчиков этих субстанций. А следовательно, к полю упругих колебаний как физической реалии волновое уравнение просто не имеет отношения.

Вообще говоря, проблема датчика является в физике ключевой. Нет датчика - нет и научной проблемы. Мы будем относиться с юмором к экстрасенсам до тех пор, пока не существует датчика биополя. Так что же, акустика находится на уровне науки о биополе? Не совсем. Существующие геофоны, гидрофоны, сейсмоприемники и т.д. действительно не являются датчиками каких бы то ни было базисных параметров поля упругих колебаний, но они являются датчиками наличия либо отсутствия самого акустического сигнала, а также источниками информации о спектре этого сигнала. Как увидим дальше, этого оказалось достаточным для разработки научного подхода при изучении поля упругих колебаний.

Впрочем, как бы то ни было, заявить о неправомерности применения волнового уравнения, используемого для описания поля упругих колебаний, после 150 лет его непрерывного использования - шаг непростой. Но давайте посмотрим с другой стороны. Ведь волновое уравнение имеет бесчисленное количество решений, и выбрать необходимое можно лишь задав соответствующие граничные условия. Однако, не имея соответствующих датчиков, нельзя определить и граничные условия. Таким образом, задавая граничные условия умозрительно, нельзя претендовать на реальность получаемых при решении уравнения результатов.

В электродинамике волновое уравнение также является основным инструментом. Однако там базисные параметры электромагнитного поля определяются в эксперименте на нормальном метрологическом уровне, и это, собственно, и определяет правомерность использования волнового уравнения, а также прогресс электродинамики и уровень ее практического использования.

Но, в конце концов, учитывая эффективность сейсморазведочных методов, может быть, можно снизить требования к ее теоретическому обоснованию? Мы ведь все знаем, что основные заслуги при поисках нефти и газа принадлежат сейсморазведке. Да, в самом деле, сейсморазведка не входит в компетенцию метрологов, но ведь главное-то - практические ее результаты.

Осознав это, я направил свои усилия на создание простых лабораторных установок, с помощью которых можно было бы моделировать принцип сейсморазведки. То есть, проще говоря, принцип акустической локации. Однако и здесь возникли совершенно непредвиденные и нигде почему-то не описанные сложности.

Как оказалось, принцип звуковой локации, легко моделируемый в воздухе и в жидкостях, в твердых средах не работает. Исключение составило очень незначительное число материалов, и в частности, оргстекло. В оргстекле легко наблюдать возникновение акустического импульса при ударном воздействии, а также распространение этого импульса и отражение его от границ, которое действительно происходит по законам геометрической оптики.

Однако в подавляющем большинстве материалов - стекле, керамике, металлах и сплавах, а также в горных породах - ни сам акустический импульс, ни его распространение, а тем более, отражение, увидеть нельзя. При ударном воздействии на объекты из подавляющего большин

s