Беспроводные телекоммуникационные системы

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



p;

Схема DPSK менее эффективна, чем PSK, поскольку в первом случае, вследствие корреляции между сигналами, ошибки имеют тенденцию к распространению (на соседние времена передачи символов). Стоит помнить, что схемы PSK и DPSK отличаются тем, что в первом случае сравнивается принятый сигнал с идеальным опорным, а во втором - два зашумленных сигнала. Отметим, что модуляция DPSK дает вдвое больший шум, чем модуляция PSK. Следовательно, при использовании DPSK следует ожидать вдвое большей вероятности ошибки, чем в случае PSK. Преимуществом схемы DPSK можно назвать меньшую сложность системы. [2]

 

3.3 Модуляция с минимальным частотным сдвигом.

 

Одной из схем модуляции без разрыва фазы является манипуляция с минимальным частотным сдвигом (MSK). MSK можно рассматривать как частный случай частотной манипуляции без разрыва фазы. Сигнал MSK можно представить следующим образом.

 

Здесь f0 - несущая частота, dk=1 представляет биполярные данные, которые передаются со скоростью R=1/T, а xk - это фазовая постоянная для k-го интервала передачи двоичных данных. Отметим, что при dk=1 передаваемая частота - это f0+1/4T, а при dk=-1 - это f0-1/4T. В течение каждого Т-секундного интервала передачи данных значение xk постоянно, т.е. xk=0 или π, что диктуется требованием непрерывности фазы сигнала в моменты t=kT. Это требование накладывает ограничение на фазу, которое можно представить следующим рекурсивным соотношением для xk.

 

 

Уравнение для s(t) можно переписать в квадратурном представлении.

 

 

Синфазный компонент обозначается как akcos(πt/2T)cos2πf0t, где cos2πf0t - несущая, cos(πt/2T) - синусоидальное взвешивание символов, ak - информационно-зависимый член. Подобным образом квадратурный компонент - это bksin(πt/2T)sin2πf0t, где sin2πf0t - квадратурное слагаемое несущей, sin(πt/2T) - такое же синусоидальное взвешивание символов, bk - информационно-зависимый член. Может показаться, что величины ak и bk могут изменять свое значение каждые T секунд. Однако из-за требования непрерывности фазы величина ak может измениться лишь при переходе функции cos(πt/2T) через нуль, а bk - только при переходе через нуль sin(πt/2T). Следовательно, взвешивание символов в синфазном или квадратурном канале - это синусоидальный импульс с периодом 2T и переменным знаком. Синфазный и квадратурный компоненты сдвинуты относительно друг друга на T секунд.

Выражение для s(t) можно переписать в иной форме.

 

 

Здесь dI(t) и dQ(t) имеют такой же смысл синфазного и квадратурного потоков данных. Схема MSK, записанная в таком виде, иногда называется MSK с предварительным кодированием. Графическое представление s(t) дано на рис. 3.4. На рис. 3.4. а) и в) показано синусоидальное взвешивание импульсов синфазного и квадратурного каналов, здесь умножение на синусоиду дает более плавные переходы фазы, чем в исходном представлении данных. На рис. 3.4. б) и г) показана модуляция ортогональных компонентов cos2πf0t и sin2πf0t синусоидальными потоками данных. На рис. 3.4. д) представлено суммирование ортогональных компонентов, изображенных на рис. 3.4. б) и г). Из выражения для s(t) и рис.3.4. можно заключить следующее: 1) сигнал s(t) имеет постоянную огибающую; 2) фаза радиочастотной несущей непрерывна при битовых переходах; 3) сигнал s(t) можно рассматривать как сигнал, модулированный FSK, с частотами передачи f0+1/4T и f0-1/4T. Таким образом, минимальное разнесение тонов, требуемое при модуляции MSK, можно записать следующим образом:

 

что равно половине скорости передачи битов. Отметим, что разнесение тонов, требуемое для MSK, - это половина (1/T) разнесения, необходимого при некогерентном обнаружении сигналов, модулированных FSK. Это объясняется тем, что фаза несущей известна и непрерывна, что позволяет осуществить когерентную демодуляцию сигнала. [2]

 

Рис. 3.4. Манипуляция с минимальным сдвигом: а) модифицированный синфазный поток битов; б) произведение синфазного потока битов и несущей; в) модифицированный квадратурный поток битов; г) произведение квадратурного потока битов и несущей; д) сигнал MSK.

3.4 Квадратурная модуляция и ее характеристики (QPSK, QAM)

 

Рассмотрим квадратурную фазовую манипуляцию (QPSK). Исходный поток данных dk(t)=d0, d1, d2,… состоит из биполярных импульсов, т.е. dk принимают значения +1 или -1 (рис. 3.5.а)), представляющие двоичную единицу и двоичный нуль. Этот поток импульсов разделяется на синфазный поток dI(t) и квадратурный - dQ(t), как показано на рис. 3.5.б).

 

dI(t)=d0, d2, d4,… (четные биты)

dQ(t)=d1, d3, d5,… (нечетные биты)

 

Удобную ортогональную реализацию сигнала QPSK можно получить, используя амплитудную модуляцию синфазного и квадратурного потоков на синусной и косинусной функциях несущей.

 

 

С помощью тригонометрических тождеств s(t) можно представить в следующем виде: s(t)=cos(2πf0t+θ(t)). Модулятор QPSK, показанный на рис. 3.5.в), использует сумму синусоидального и косинусоидального слагаемых. Поток импульсов dI(t) используется для амплитудной модуляции (с амплитудой +1 или -1) косинусоиды. Это равноценно сдвигу фазы косинусоиды на 0 или π; следовательно, в результате получаем сигнал BPSK. Аналогично поток импульсов dQ(t) модулирует синусоиду, что дает сигнал BPSK, ортогональный предыдущему. При суммировании этих двух ортогональных компонентов несущей получается сигнал QPSK. Величина θ(t) будет соответствовать одному из четырех возможных сочетаний dI(t) и dQ(t) в выражении для s(t): θ(t)=00, 900 или 1800; результирующие векторы сигналов показаны в сигнальном пространстве на рис. 3.6. Так как cos(2πf0t) и sin(2πf0t) ортогональны, два сигнала BPSK можно обнаруживать раздельно. QPSK обладает рядом преимуществ перед BPSK: т.к. при модуляции QPSK один импульс передает два бита, то в два раза повышается скорость передачи данных или при той же скорости передачи данных, что и в схеме BPSK, используется в два раза меньшая полоса частот; а так же повышается помехоустойчивость, т.к. импульсы в два раза длиннее, а следовательно и больше по мощности, чем импульсы BPSK. [2]

 

Рис. 3.5. Модуляция QPSK.

 

Рис. 3.6. Сигнальное пространство для схемы QPSK.

 

Квадратурную амплитудную модуляцию (KAM, QAM) можно считать логическим продолжением QPSK, поскольку сигнал QAM также состоит из двух независимых амплитудно-модулированных несущих.

При квадратурной амплитудной модуляции изменяется как фаза, так и амплитуда сигнала, что позволяет увеличить количество кодируемых бит и при этом существенно повысить помехоустойчивость. Квадратурное представление сигналов является удобным и достаточно универсальным средством их описания. Квадратурное представление заключается в выражении колебания линейной комбинацией двух ортогональных составляющих - синусоидальной и косинусоидальной (синфазной и квадратурной):

s(t)=A(t)cos(ωt + φ(t))=x(t)sinωt + y(t)cosωt, где

x(t)=A(t)(-sinφ(t)),y(t)=A(t)cosφ(t)

 

Такая дискретная модуляция (манипуляция) осуществляется по двум каналам, на несущих, сдвинутых на 900 друг относительно друга, т.е. находящихся в квадратуре (отсюда и название).

Поясним работу квадратурной схемы на примере формирования сигналов четырехфазной ФМ (ФМ-4) (рис. 3.7).

 

Рис. 3.7. Схема квадратурного модулятора.

 

Рис. 3.8. 16-ричное пространство сигналов (QAM-16).

 

Исходная последовательность двоичных символов длительностью Т при помощи регистра сдвига разделяется на нечетные импульсы y, которые подаются в квадратурный канал (cosωt), и четные - x, поступающие в синфазный канал (sinωt). Обе последовательности импульсов поступают на входы соответствующих формирователей манипулированных импульсов, на выходах которых образуются последовательности биполярных импульсов x(t) и y(t) с амплитудой Um и длительностью 2T. Импульсы x(t) и y(t) поступают на входы канальных перемножителей, на выходах которых формируются двухфазные (0, π) ФМ колебания. После суммирования они образуют сигнал ФМ-4.

На рис. 3.8. показано двухмерное пространство сигналов и набор векторов сигналов, модулированных 16-ричной QAM и изображенных точками, которые расположены в виде прямоугольной совокупности.

Из рис. 3.8. видно, что расстояние между векторами сигналов в сигнальном пространстве при QAM больше, чем при QPSK, следовательно, QAM является более помехоустойчивой по сравнению с QPSK,

 

3.5 Реализация квадратурных модемов

 

Модем предназначен для передачи/приема информации по обычным телефонным проводам. В этом смысле модем осуществляет роль интерфейса между компьютером и телефонной сетью. Его основная задача заключается в преобразовании передаваемой информации к виду, приемлемому для передачи по телефонным каналам связи, и в преобразовании принимаемой информации к виду, приемлемому для компьютера. Как известно, компьютер способен обрабатывать и передавать информацию в двоичном коде, то есть в виде последовательности логических нулей и единиц, называемых битами. Логической единице можно поставить в соответствие высокий уровень напряжения, а логическому нулю - низкий. При передаче информации по телефонным проводам необходимо, чтобы характеристики передаваемых электрических сигналов (мощность, спектральный состав и т.д.) соответствовали требованиям приемной аппаратуры АТС. Одно из основных требований заключается в том, чтобы спектр сигнала лежал в диапазоне от 300 до 3400 Гц, то есть имел ширину не более 3100 Гц. Для того чтобы удовлетворить