Бернулли

В 1725 г. Д. Бернулли вместе с И. Бернулли получил первую премию на объявленном Парижской академией наук первом конкурсе на

Бернулли

Информация

Математика и статистика

Другие материалы по предмету

Математика и статистика

Сдать работу со 100% гаранией
ьностей на случай рядов.

Как вдруг появились ряды? Дифференциальное и интегральное исчисления возникли в связи с необходимостью решать конкретные механические и геометрические задачи, не поддававшиеся средневековой и античной математике. А ряды? Они на первый взгляд кажутся крайне искусственными. Но это глубокое заблуждение. Ряды возникли одновременно с дифференциальным и интегральным исчислениями, и теория их строилась Ньютоном, Лейбницем, представителями семьи Бернулли и последующими математиками. И при изучении их деятельности рельефно выступают ее проблематика и методология.

С рядами дело обстояло так же естественно, как и с другими важнейшими разделами математики, получившими бурное развитие в XVIII в.: они применялись там, где другие средства исследования отказывали. Степенные ряды давали возможность приближенно решать уравнения, вычислять значения функций, вычислять интегралы, не выражающиеся через конечное число элементарных функций, решать дифференциальные уравнения, не интегрируемые в конечном виде.

В 1732 г. Парижской академией был объявлен конкурс с удвоенной премией на тему «О взаимном наклонении планет». Премию получили Д. и И. Бернулли. Премированы также сочинения Д. Бернулли: «О лучшем способе устройства якорей» (1738), «О морском приливе и отливе» (1740), «О наилучшем способе устройства магнитных стрелок наклонения» (1743), «О лучшем способе определения времени в море» (1745-1746), «Теория магнита» (1742, 1744, 1746), «О теории течений и о лучшем способе их наблюдать» (1751 удвоенная премия), «О наиболее выгодном способе замены действия ветра на больших судах» (1753), «О наилучшем способе уменьшения боковой и килевой качки судна» (1757).

У семьи Бернулли есть также много других открытий в области высшей математики и физики. Вот несколько примеров таких открытий:

БЕРНУЛЛИ СХЕМА (назв. по имени Я. Бернулли), одна из основных математических моделей для описания независимых повторений опытов, используемых в теории вероятностей. Бернулли схема предполагает, что имеется некоторый опыт Х и связанное с ним случайное событие А (типичный пример: S бросание монеты, А выпадение герба). Производят n независимых повторений S. При каждом осуществлении S событие А может наступить с вероятностью р (здесь р=1/2), или наступить неудача с вероятностью g=1-p. Таким образом схема Бернулли определяется двумя параметрами: п и р.

БЕРНУЛЛИ ТЕОРЕМА, одна из важнейших теорем теории вероятностей; является простейшим случаем т. н. закона больших чисел. Бернулли теорема была впервые опубликована в труде Я. Бернулли «Искусство предположений», изданном в 1713. Первые ее доказательства требовали сложных математических средств, лишь в сер. 19 в. П. Л. Чебышев нашёл необычайно изящное и краткое её доказательство. Точная формулировка теоремы Бернулли такова: если при каждом из п независимых испытаний вероятность некоторого события равна р, то вероятность того, что частота т/п появления события удовлетворяет неравенству |т/пр|<ε (εпроизвольно малое положительное число), становится сколь угодно близкой к единице при достаточно большом числе п испытаний. Из доказательства Чебышева вытекает простая количественная оценка этой вероятности:

Р {|т/пр|<ε}>1р(1р)/пε2. В. И. Битюцков.

БЕРНУЛЛИ УРАВНЕНИЕ, дифференциальное уравнение 1-го порядка вида:

dy/dx + Py = Qya, где Р, Q заданные непрерывные функции от х, а постоянное число. Введением новой функции z=y1-a. Уравнение Бернулли сводится к линейному дифференциальному

уравнению относительно z. Уравнение Бернулли было рассмотрено Я. Бернулли в 1695, метод решения опубликован И. Бернулли в 1697 г.

БЕРНУЛЛИ УРАВНЕНИЕ, основное уравнение гидродинамики, связывающее (для установившегося течения) скорость текущей жидкости v, давление в ней р и высоту h расположения малого объёма жидкости над плоскостью отсчёта. Уравнение Бернулли было выведено Д. Бернулли в 1738 г. для струйки идеальной несжимаемой жидкости постоянной плотности ρ, находящейся под действием только сил тяжести. В этом случае уравнение Бернулли принимает вид:

v2/2+p/ρ + gh = const, где g ускорение силы тяжести. Если это уравнение умножить на ρ, то 1-й член будет представлять собой кинетическую энергию единицы объема жидкости, а другие два члена его потенциальную энергию. Уравнение Бернулли в такой форме выражает закон сохранения энергии.

Фамилия Бернулли мне встречалась очень часто, но до некоторого времени я не знал, что она принадлежит ряду ученых - родственников. Я думаю, многие даже и не слышали этой фамилии или не догадываются, что Бернулли были теми людьми, о которых говорят, что они посвятили себя полностью науке.

Примечательно не то, что это семейство сделало ряд значимых открытий в разных областях науки, а то, что они, за исключением только некоторых членов семьи, были как-либо связаны с наукой, в частности с математикой. Нельзя сравнивать «умных» представителей этой фамилии с другими великими учеными, но они, пожалуй, были самыми гениальными учеными своего времени. Многие их открытия даже сейчас кажутся нам нереальными, недоказуемыми, но и как все гениальное простыми.

Я не знаю, что мне в будущем пригодится из того, что я здесь изложил, но я точно знаю, что не встречу и не услышу о другой такой семье, подарившей миру столько гениев.

Список литературы

Н. Я. Виленкин «Великие математики Бернулли»

«Большая Советская Энциклопедия» (в 30 томах). Гл. редактор А. М. Прохоров. 3-е издание М.. «Советская Энциклопедия» 1970 г.

« Энциклопедический словарь юного математика»

«Справочник по элементарной математике» М. Я. Выгодский

Для подготовки данной работы были использованы материалы с сайта http://www.ed.vseved.ru/

Похожие работы

<< < 2 3 4 5 6