типологические
структурные
аналитические
Главная задача типологической состоит в классификации социально-экономических явлений путем выделения однородных к качественным отношениям групп.
Качественная однородность при этом понимается в том смысле, что в отношении изучаемого свойства все единицы совокупности подчиняются одному закону развития. Например: группировка предприятиям отраслей экономики.
1.3 Сущность и значение средних величин
Средние величины являются одними из наиболее распространенных обобщающих статистических показателей. Они имеют своей целью одним числом охарактеризовать статистическую совокупность состоящую из меньшинства единиц. Средние величины тесно связаны с законом больших чисел. Сущность этой зависимости заключается в том, что при большом числе наблюдений случайные отклонения от общей статистики взаимопогашаются и в среднем более отчетливо проявляется статистическая закономерность.
) Среднее арифметическое.
Для выяснения методики расчета средней арифметической используем следующие обозначения:- арифметический признак(X1, X2,… X3) - варианты определенного признака- число единиц совокупности
- средняя величина признака
В зависимости от исходных данных средняя арифметическая может быть рассчитана двумя способами:
. Если данные статистического наблюдения на сгруппированы, или сгруппированные варианты имеют одинаковые частоты, то рассчитывается средняя арифметическая простая:
. Если частоты сгруппированы в данных разные, то рассчитывается среднее арифметическое взвешенное:
- численность (частоты) вариантов
- сумма частот
Среднее арифметическое рассчитывается по разному в дискретных и интервальных вариационных рядах.
В дискретных рядах варианты признака умножаются на частоты, эти произведения суммируются и полученная сумма произведений делится на сумму частот.
2) Средняя гармоническая.
Средняя гармоническая является первообразной формой средней арифметической. Она рассчитывается в тех случаях, когда веса fi не заданы непосредственно, а входят как сомножитель в один из имеющихся показателей. Также как и арифметическая, средняя гармоническая может быть простой и взвешенной.
Средняя гармоническая невзвешенная:
Средняя гармоническая смешанная:
Wi - произведение вариантов на частоты
При расчете средних величин необходимо помнить о том, что всякие промежуточные вычисления должны приводить как в числителе, так и в знаменателе и имеющим экономический смысл показателям.
3) Структурное среднее.
Структурное среднее характеризует состав статистической совокупности по одному из варьирующих признаков. К этим средним относятся мода и медиана.
Мода - такое значение варьирующего признака, которое в данном ряду распределения имеет наибольшую частоту.
В дискретных рядах распределений мода определяется визуально. Сначала определяется наибольшая частота, а по ней модальное значение признака. В интервальных рядах для вычисления моды используется следующая формула:
Xmo - нижняя граница модальности (интервал ряда с наибольшей частотой)- величина интервала- частота модального интервала- частота интервала предшествующего модальному+1 - частота интервала следующего за модальным
Медианой называется такое значение варьирующего признака, которое делит ряд распределения на две равные части по объему частот. Медиана рассчитывается по разному в дискретных и интервальных рядах.
. Если ряд распределения дискретный и состоит из четного числа членов, то медиана определяется как средняя величина из двух серединных значений рангированного ряда признаков.
. Если в дискретном ряду распределения нечетное число уровней, то медианой будет серединное значение рангированного ряда признаков.
В интервальных рядах медиана определяется по формуле:
- нижняя граница медианного интервала (интервала для которого накопленная частота впервые превысит полусумму частот)- величина интервала
- сумма частот ряда
- сумма накопленных частот предшествующих медианному интервалу
- частота медианного интервала
1.4 Общее понятие о вариации
Вариацией называется различие значений признака у отдельных единиц совокупности.
Вариация возникает в силу того, что отдельные значения признака формируются по влияние большого числа взаимосвязанных факторов. Эти факторы часто действуют в противоположных направлениях и их совместное действие формирует значение признаков у конкретной единицы совокупности. Необходимость изучения вариаций связана с тем, что средняя величина, обобщающая данные статистического наблюдения, на показывает как колеблется вокруг нее индивидуальное значение признака.
К примерам вариаций относятся следующие показатели:
. размах вариаций
. среднее линейное отклонение
. среднеквадратическое отклонение
. дисперсия
. коэффициент
. Размах вариаций является ее простейшим показателем. Он определяется как разность между максимальным и минимальным значение признака. Недостаток этого показателя заключается в том, что он зависит только от двух крайних значений признака (min, max) и не характеризует колеблимость внутри совокупности. R=Xmax-Xmin.
. Среднее линейное отклонение является средней величиной абсолютных значений отклонений от средней арифметической. Оно определяется по формуле:
- простая
Отклонения берутся по модулю, т. к. в противном случае, из-за математических свойств средней величины, они всегда были бы равны нулю.
. Дисперсия (средний квадрат отклонений) имеет наибольшее применение в статистике как показатель меры колеблимости.
Дисперсия определяется по формулам:
Дисперсия является именованным показателем. Она измеряется в единицах соответствующих квадрату единиц измерения изучаемого признака. В данном случае она показывает, что средний размер отклонения прибыли по 50 предприятиям от средней прибыли составляет 1,48.
Дисперсия может быть также определена по формуле:
. Среднеквадратическое отклонение определяется как корень из дисперсии.
По исходным данным приведенным выше, среднее квадратическое отклонение равно:
По исходным данным приведенным выше, среднее квадратическое отклонение равно: .
5. Коэффициент вариаций определяется как отношение среднеквадратического отклонения к средней величине признака, выраженное в процентах:
Он характеризует количественную однородность статистической совокупности. Если данный коэффициент < 50%, то это говорит об однородности статистической совокупности. Если же совокупность не однородна, то любые статистические исследования можно проводить только внутри выделенных однородных групп.
. Виды и формы зависимости между социально-экономическими явлениями.
Многообразие взаимосвязей в которых находятся социально-экономические явления, рождают необходимость в их классификации.
По видам различают функциональную и корреляционную зависимость.
Функциональной называют такую зависимость, при которой одному значению факторного признака X соответствует одно строго определенное значение результативного признака Y.
В отличие от функциональной зависимости, корреляционная выражает такую связь между социально-экономическими явлениями, при которой одному значению факторного признака X могут соответствовать несколько значений результативного признака Y.
Важное место в статистическом изучении взаимосвязей занимают следующие методы:
. Метод приведения параллельных данных.
. Метод аналитических группировок.
. Графический метод.
. Балансовый метод.
. Индексный метод.
. Корреляционно-регрессионный.
Сущность метода приведения параллельных данных заключается в следующем:
Исходные данные по признаку X располагаются в порядке возрастания или убывания, а по признаку Y записываются соответствующие им показатели. Путем сопоставления значений X и Y, делается вывод о наличии и направлении зависимости.
Сущность графического метода составляет наглядное представление наличия и направления взаимосвязей между признаками. Для этого значение факторного признака X располагается по оси абсцисс, а значение результативного признака по оси ординат. По совместному расположению точек на графике делают вывод о направлении и наличии зависимости. Если точки на графике расположены беспорядочно, то зависимость между изучаемыми признаками отсутствует. Если точки на графике концентрируются вокруг прямой, зависимость между признаками прямая. Если точки концентрируются вокруг прямой, то это свидетельствует о наличии обратной зависимости.
На основе исходных данных о факторном и результативном признаках, может быть рассчитан коэффициент корреляции рангов Спирмена, который определяется по формуле:
- квадраты разности рангов.
(R2-R1), n - число пар рангов.
Данный коэффициент, как и предыдущий, изменяется в тех же пределах и имеет одинаковую с KF экономическую интерпретацию.
В тех случаях, когда значение X или Y выражаются одинаковыми показателями, коэффициент корреляции рангов рассчитывается по следующей формуле:
- одинаковое число рангов в j - ряду
Если исследуется зависимость