Способы решения систем линейных уравнений

Информация - Математика и статистика

Другие материалы по предмету Математика и статистика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



уравнения x4 = 1, из третьего х3 = 3. Подставив значения х3 и x4 во второе уравнение, найдем x2 = 2. Подставив значения x2, x3, x4 в первое уравнение, найдем x1 = 1.

Теорема совместности Кронекера Капелли звучит следующим образом: Для того, чтобы система неоднородных линейных уравнений была совместной, необходимо и достаточно, чтобы ранг расширенной матрицы системы был равен рангу её основной матрицы. Рассмотрим следующий пример:

Рассмотрим систему

5x1 x2 + 2x3 + x4 = 7;

2x1 + x2 4x3 2x4 = 1;

x1 3x2 + 6x3 5x4 = 0.

Ранг основной матрицы этой системы равен 2, так как сцществует отличный от нуля минор второго порядка этой матрицы, например

5 1 = 7,

2 1

а все миноры третьего порядка равны нулю.

Ранг расширенной матрицы этой системы равен 3, так как существует отличный от нуля минор третьего порядка этой матрицы, например

5 1 7

2 1 1 = 35.

1 3 0

Согласно критерию Кронекера Капелли система несовместна, т.е. не имеет решений.

В процессе работы я узнала много нового: какие действия можно выполнять над матрицами, какой путь решения систем линейных уравнений наиболее простой и быстрый, а так же многие другие теоретические вопросы и провела практические исследования, приводя примеры в тексте.

Тема решения систем линейных уравнений предлагается на вступительных экзаменах в различные математические вузы, на выпускных экзаменах, поэтому умение их решать очень важно.

Реферат может использоваться как учащимися, так и преподавателями в процессе факультативных занятий, как пособие для самостоятельного изучения по теме „Способы решения систем линейных уравнений ”, а также в качестве дополнительного материала.

 

s