Способы применения методов теории принятия решений

Курсовой проект - Менеджмент

Другие курсовые по предмету Менеджмент

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



для влияния на ход развития процесса. Например, выпуск продукции предприятием - управленческий процесс. Совокупность решений принимаемых в начале года (квартала и т.д.) по обеспечению предприятия сырьем, замене оборудования, финансированию и т.д., является управлением. Необходимо организовать выпуск продукции так, чтобы принятые решения на отдельных этапах способствовали получению максимально возможного объема продукции или прибыли.

Динамическое программирование позволяет свести одну сложную задачу со многими переменными ко многим задачам с малым числом переменных. Это значительно сокращает объем вычислений и ускоряет процесс принятия управленческого решения. При решении задачи этим методом процесс решения расчленяется на этапы, решаемые последовательно во времени и приводящие, в конечном счете, к искомому решению.

В отличие от линейного программирования, в котором симплексный метод является универсальным методом решения, в динамическом программировании такого универсального метода не существует. Одним из основных методов динамического программирования является метод рекуррентных соотношений, который основывается на использовании принципа оптимальности, разработанного американским математиком Р. Беллманом. Принцип состоит в том, что, каковы бы ни были начальное состояние на любом шаге и управление, выбранное на этом шаге, последующие управления должны выбираться оптимальными относительно состояния, к которому придет система в конце данного шага. Использование данного принципа гарантирует, что управление, выбранное на любом шаге; не локально лучше, а лучше с точки зрения процесса в целом [6].

В некоторых задачах, решаемых методом динамического программирования, процесс управления разбивается на шаги. При распределении на несколько лет ресурсов деятельности предприятия шагом целесообразно считать временной период; при распределении средств между предприятиями - номер очередного предприятия. В других задачах разбиение на шаги вводится искусственно. Например, непрерывный управляемый процесс можно рассматривать как дискретный, условно разбив, его на временные отрезки (шаги). Исходя из условий каждой конкретной задачи, длину шага выбирают таким образом, чтобы на каждом шаге получить простую задачу оптимизации и обеспечить требуемую точность вычислений. [7]

 

1.2.4 Теория игр

При решении экономических задач часто анализировать ситуации, в которых сталкиваются интересы двух или более конкурирующих сторон, преследующих различные цели; это особенно характерно в условиях рыночной экономики. Такого рода ситуации называются конфликтными. [8]

Математической теорией конфликтных ситуаций является теория игр. В игре могут сталкиваться интересы двух (игра парная) или нескольких (игра множественная) противников; существуют игры с бесконечным множеством игроков. Если во множественной игре игроки образуют коалицию, то игра называется коалиционной; если таких коалиций две, то игра сводится к парной.

На промышленных предприятиях теория игр может применяться для выбора оптимальных решений, например, при создании рациональных запасов сырья, материалов, полуфабрикатов, когда противоборствуют две тенденции: увеличение запасов, гарантирующих бесперебойную работу производства, сокращения запасов в целях минимизации затрат на их хранение. В сельском хозяйстве теория игр может применяться при решении таких экономических задач, как посева одной из возможных культур, урожай которой зависит от погоды, если известны цена единицы той или иной культуры и средняя урожайность каждой культуры в зависимости от погоды (например, будет ли лето засушливы, нормальным или дождливым); в этом случае одним выступает сельскохозяйственное предприятие, стремящееся обеспечить наибольший доход, а другим - природа.

Решение подобных задач требует полной определенности формулировании их условий (правил игры); установления количества игроков, выявления возможных стратегий игроков, возможных выигрышей (проигрыш понимается как отрицательный выигрыш). Важным элементом в условии игровых задач является стратегия, т.е. совокупность правил, которые в зависимости от ситуации в игре определяют однозначный выбор действий данного игрока. Если в процессе игры игрок применяет попеременно несколько стратегий, то такая стратегия называется смешанной, а ее элементы - чистыми стратегиями. Количество стратегий у каждого игрока может быть конечным и бесконечным, в зависимости от этого игры подразделяются на конечные и бесконечные [9].

 

1.2.5 Метод экспертных оценок

Принципиально ЛПР может получить не обходимую ему для принятия решений информацию, воспользовавшись всего лишь тремя источниками: личными знаниями, личным опытом и интуицией; чужим опытом, анализируя эмпирические данные; советами специалистов, экспертов. Однако при решении действительно сложных, комплексных проблем, особенно в условиях неопределенности и неполноты информации, часто единственным способом хоть как-то определиться в сложной ситуации оказывается способ логико-эвристического анализа, базирующийся на экспертном оценивании. [10]

Методы экспертных оценок - это методы организации работы со специалистами-экспертами и обработки мнений экспертов. Эти мнения обычно выражены частично в количественной, частично в качественной форме. Экспертные исследования проводят с целью подготовки информации для принятия решений ЛПР (ЛПР - лицо принимающее решение). Для проведения р

s