Баллистическое проектирование неуправляемых реактивных снарядов (НРС)

Ушел в историю XX в. - век стремительного научно-технического прогресса и двух мировых войн. Пожалуй, невозможно сейчас найти какую-либо область

Баллистическое проектирование неуправляемых реактивных снарядов (НРС)

Дипломная работа

Безопасность жизнедеятельности

Другие дипломы по предмету

Безопасность жизнедеятельности

Сдать работу со 100% гаранией

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Баллистическое проектирование неуправляемых реактивных снарядов (НРС)

 

 

Содержание

 

1. Баллистическое проектирование боеприпасов ствольной артиллерии

1.1 Постановка задачи баллистического проектирования

1.2 Обоснование банка модулей баллистического проектирования

1.2.1 Модуль внутренней баллистики

1.2.2 Модуль внешней баллистики

1.2.3 Модуль оценки эффективности действия

1.2.4 Модуль оптимизации

1.3 Проверка адекватности имитационной модели

1.4 Параметрический анализ баллистического решения

1.5 Оптимизация баллистического решения боеприпаса

.5.1 Выбор критерия оптимизации, системы ограничений и вектора оптимизируемых параметров

.5.2 Постановка задачи оптимизации баллистического решения

.5.3 Выбор метода оптимизации и условий машинного эксперимента

Заключение по разделу 1

. Баллистическое проектирование неуправляемых реактивных снарядов (НРС)

.1 Постановка задачи

.2 Программное обеспечение баллистического проектирования НРС

.3 Параметрический анализ баллистического проектирования НРС

.4 Оптимизация баллистического решения НРС

.4.1 Выбор критерия оптимизации, системы ограничений и вектора оптимизируемых параметров

.4.2 Выбор условий машинного эксперимента

.4.3 Анализ результатов и принятие решения по конструкции

Заключение по разделу 2

Список используемой литературы

Приложение 1

Приложение 2

 

 

Введение

 

Ушел в историю XX в. - век стремительного научно-технического прогресса и двух мировых войн. Пожалуй, невозможно сейчас найти какую-либо область науки и техники, в которой не были совершены крупнейшие открытия и технологические прорывы. Естественно, что многие из них интенсивно используются в целях обеспечения безопасности государств, а именно, в военно-технической области, в результате чего были созданы самые разнообразные средства поражения и боеприпасы как для вооруженных сил, так и для других силовых структур. И хотя последнее десятилетие XX в. И начало XXI в. Ознаменовались прекращением противостояния военно-политических блоков, возглавляемых сверхдержавами, и изменением международной обстановки, обычные СП и БП и в обозримом будущем останутся основным фактором сдерживания и огневого воздействия в возможных межрегиональных конфликтах и локальных войнах. Данный вывод наглядно подтвердили результаты проведения операции «Буря в пустыне» группировкой многонациональных сил против Ирака в 1991 г. Тогда в тактической полосе обороны от артиллерийского огня иракские войска понесли более 50% общих потерь. Аналогичная ситуация имела место в Ираке и в 2003 г. при осуществлении операции «Шок и трепет».

Обеспечение военной безопасности остается по-прежнему важной задачей любого государства. Для решения этой проблемы необходимо неустанно, ответственно совершенствовать вооружение и военную технику рода войск. Главное на сегодня - оснащение ракетных войск и артиллерии высокоэффективными комплексами автоматизированного управления и разведки, а также модернизированными или перспективными ракетными и артиллерийскими комплексами, средствами всестороннего обеспечения и защиты. Именно комплексирование существующих средств разведки, поражения и всестороннего обеспечения на основе разрабатываемых автоматизированных средств управления позволит создать техническую основу разведывательно-огневых систем ракетных войск и артиллерии.

Одной из актуальнейших задач сегодня стала модернизация наиболее эффективных существующих образцов (комплексов) вооружения, военной техники и боеприпасов. За счет улучшения их характеристик, повышения боевых возможностей, продления сроков службы, поддержания вооружения в технической исправности и готовности к боевому применению можно добиться очень много. Модернизация осуществляется как путем замены отдельных компонентов, узлов, агрегатов, блоков, так посредством изменения конструкции, применения новых материалов, внедрения прогрессивных технологии в их производство и проектирование. Например, модернизация реактивных систем залпового огня достигается за счет оснащения боевой машины автоматизированной системой управления наведением и огнем. Модернизация боеприпасов является очень важным звеном модернизации артиллерийских комплексов. А благодаря современным методам проектирования с помощью ЭВМ, не прибегая к экспериментам и опытным стрельбам, стало возможно отсеивать нежизнеспособные варианты проектных решений, это значит снижается время от получения ТЗ до выхода боеприпаса с конвейера. Это позволяет оперативно изготавливать боеприпасы в нужном количестве.

В целом модернизация наличного вооружения и военной техники позволит значительно увеличить суммарный прирост реальных огневых возможностей ракетных войск и артиллерии. Но наряду с модернизацией крайне важно создавать перспективную технику, сохранить и развивать научно-технический и технологический потенциал.

 

 

1. Баллистическое проектирование боеприпасов ствольной артиллерии

 

.1 Постановка задачи баллистического проектирования

 

Под баллистическим проектированием на основе системных принципов понимают определение оптимальных основных конструктивных, экономических и др. характеристик, предъявляемых к ствольному комплексу в целом, и к каждому элементу комплекса в отдельности.

В математической модели эти требования можно выразить при помощи системы ограничений и связей, определяющих функционирование комплекса. В данной работе система связей представлена следующими ограничениями:

* PMAX ≤ [PMAX]

* VOTK ≤ [V OTK]

* Х ≥ Х ГAP

* CБЗ -> CMIN

Технические характеристики артиллерийского орудия и снаряда

Наименование: Д1

Тип снаряда и его наименование: Г 530Ш

Калибр, мм 152,4

Объём зарядной каморы, м3 0,0057

Масса метательного заряда, кг 3,42

Максимальное давление пороховых газов, МПа 225

Масса штатного снаряда, кг 40

Начальная скорость V0, м/с 508

Угол бросания, рад 0,785

Наибольшая табличная дальность стрельбы, м 12400

Масса взрывчатого вещества, кг 4,9

Полная длина снаряда, м 0,5975

Высота головной части снаряда, м 0,3045

Расстояние между центром массы и основанием оживала, м 0,045

Коэффициент формы снаряда 1,15

 

.2 Обоснование банка модулей баллистического проектирования

 

.2.1 Модуль внутренней баллистики

Предметом изучения классической внутренней баллистики является движение снаряда внутри канала ствола артиллерийского орудия. При этом рассматривается система, состоящая из орудия, снаряда и метательного заряда.

Основная задача внутренней баллистики заключается в отыскании зависимостей между пиродинамическими элементами(t, l, V, P и др.) и параметрами(d, q, ω и др.). При этом получают и интегрируют систему дифференциальных уравнений внутренней баллистики, описывающую процессы, протекающие в орудии при выстреле.

Программное обеспечение (ПО) по функциональному назначению разбито на отдельные секции (модули). По виду выполняемой работы модули можно разделить на расчетные и сервисные. Расчетные модули предназначены для выполнения определенных вычислительных операций. Сервисные - для улучшения связи пользователя с программой, обслуживания расчетных модулей.BALRK;

Подпрограмма расчета пиродинамических параметров методом Рунге-Кутта;pmcl2;

Пoдпpoгpaммa pacчeтa пиpoдинaмичecкиx пapaмeтpoв мeтoдом Слухоцкого;GBDBB;

Пoдпpoгpaммa пpeднaзнaчeна для oпpeдeлeния cpeдинныx oшибoк cтpeльбы cиcтeмa измepeния вeличин "CИ".

1.2.2 Модуль внешней баллистики

В общем случае выбор данных, необходимых для решения поставленной задачи осуществляется исходя из требований, предъявляемых к артиллерийской системе. Проверка внешнебаллистических характеристик является подтверждением правильности выбора конструктивной схемы снаряда и выполнения всех требований технического задания.

Основная задача внешней баллистики сводится к вычислению траектории снаряда, для чего необходимо проинтегрировать дифференциальные уравнения поступательного движения. Однако в конечном виде эти уравнения не интегрируются, потому что входящие в них функции сопротивления воздуха G(Vt) и плотности Ht(y) имеют очень сложное аналитическое представление или вообще не имеют его, а задаются таблицами.

При проектировании снаряда к нарезному орудию рассчитывают устойчивость полета снаряда в момент вылета его за дульный срез ствола орудия и направленность в вершине траектории.

При этом необходимо определить:

·коэффициент гироскопической устойчивости снаряда;

·расчетную длину хода нарезов ствола орудия;

·величину углового отклонения оси снаряда в момент вылета его из канала ствола;

·динамический угол в вершине траектории;

·максимальную дальность стрельбы. GOFSTQUI;

Пoдпpoгpaммa пpeднaзнaчeна для быстрого pacчeтa элeмeнтoв тpaeктopии по формулам, аппроксимирующим таблицы внешней баллистики для угла бросания 0° - 45°;GOFST1;

Пoдпpoгpaммa пpeднaзнaчeна для pacчeтa элeмeнтoв тpaeктopии методом Эйлера;PVHAI;

Подпрограмма, осуществляющая расчет рекомендуемой высоты головной части изделия и коэффициент формы по закону 1943 года.

 

1.2.3 Модуль оценки эффективности действия

Для оценки правил

Похожие работы

1 2 3 4 5 > >>