Системное автоматизированное проектирование

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



моделях (0,1) и (+_1), определяя тем самым возможные состояния элементов при нулевых порогах.

Для хранения образов памяти , s= 1,..., n используется матрица связей следующего вида:

, i-=j , (3)

В такой сети воздействие на i-нейрон будет определяться выражением для "силы"( являющейся аналогом мембранного потенциала в нейробиологии)

 

 

i-=j, = 0.

Для случайно выбранных векторов среднее значение члена в скобках равно нулю, если s-=s. Тогда справедливо выражение:

 

принимает положительные значения при = 1 и отрицательные при =0.

Поэтому при пренебрежении шумом, даваемым членами с s-=s, состояние образов памяти устойчиво

( во всяком случае , при n < N ). Возможно появление дополнительных устойчивых состояний сети, не совпадающих с векторами памяти - "ложные образы ".

Динамика нейронной сети, описываемая уравнениями (2)-(3), имеет в качестве аттракторов только устойчивые стационарные точки. В случае симметричной матрицы Т в системе возможно наличие

большого числа стационарных состояний. Теория дискретных сетей Хопфилда получила в последнее время

значительное развитие. Возможность введения функции, имеющей смысл энергии, уменьшающейся в процессе релаксации начального состояния системы, позволила применить для исследования системы

хорошо разработанный аппарат статистической физики. В частности, введение сопряженной к энергии величины - эффективной "температуры" - позволило исследовать структуру устойчивых состояний и воз-

можности их изменения в процессе обучения .

Возможна реализация нейронной сети на аналоговых элементах (операционных усилителях). Это позволяет использовать их для решения задач комбинаторной оптимизации, коммивояжере, задаче о

раскраске карт, задаче оптимизации размещения электронных элементов на чипе.

 

б) СЕТЬ КОСКО

 

Коско предложил модель нейронной сети с синхронной динамикой, которая получила название двунаправленной ассоциативной памяти ( bidirectional associative memory, BAM). Она представляет инте-

рес для оптических реализаций нейронных сетей. В этой модели вся совокупность нейронов разделена на подмножества ( вообще говоря, различной мощности) - А и В . Сеть устроена таким образом, что

выходы нейронов подсети А связаны с входами нейронов подсети В и наоборот( см. рис. ). Матрица связей строится по правилу:

оно имеет вид суммы прямых произведений векторов памяти

 

Рис. Схема модели двунаправленной ассоциативной памяти Коско.

Динамика этой системы описывается парой уравнений

,

.

 

Так же, как и в случае модели Хопфилда, для ВАМ единственными аттракторами в фазовом пространстве являются устойчивые стационарные точки, называемые парой ( ). Эти точки достигаются

из произвольного начального состояния - пары векторов ( ).

Имеются модификации нейронной сети Коско:

- за счет введения матриц связи общего вида ( ассиметричных, удовлетворяющих принципу "детального баланса"),

- за счет введения ненулевых порогов, что позволяет увеличить число устойчивых состояний системы ( их число в общем случае N находится между 1 и 2 ).

 

 

в) ХЕММИНГОВА СЕТЬ

 

Хеммингова сеть представлена на рис. .

Она состоит из двух частей. Нижняя подсеть служит для формирования по входу - бинарному вектору длиной N - начального состояния для нейронов верхней подсети. Число нейронов в ней M.

Веса связей для нижней подсети и для верхней, а также пороги для нижней подсети устанавливаются по следующим правилам:

 

, = N/2 , i=1,...,N , j=1,..., M, (4)

 

.

Пороги для верхней подсети устанавливаются равными нулю. В выражении (4) - i-ый элемент j-го вектора памяти (число нейронов в среднем слое M совпадает с числом записанных образов).

Рис. Схематическое изображение хемминговой сети.

 

В данной сети выполняются итерации для нейронов верхней подсети

 

при начальном условии

 

.

 

Функция g в этих выражениях соответствует рис.3б, причем динамика чувствительна к выбору величины переходной области а. Процесс итераций продолжается до тех пор, пока выходы всех нейронов,

за исключением одного, не станут отрицательными.

Имеется другое название сети Хемминга - сеть с латеральным торможением ( явление латерального торможения широко распространено в нейрофизиологии).

 

г) ПЕРЦЕПТРОНЫ

 

Простейший персептрон состоит из одного слоя нейронов, соединенных связями с N входами. Соответствующая схема представлена на рис. .

Веса связей обозначены , i=1,...,N , j=1,...,M (M - число нейронов - пороговых элементов в слое). Каждый из нейронов осуществляет нелинейное преобразование сигналов, поступающих на его вход, согласно выражению (1)

 

, (6)

 

где g - пороговая функция, изображенная на рис.3а, - входные значения, = 0,1 - переменные характеризующие выходы нейронов. Переменные могут принимать произвольные значения ( в частности, могут быть аналоговыми). Согласно ( 6 ), персептрон разделяет все N -мерное пространство входных переменных { } на классы посредством гиперплоскостей. Они определяются уравнениями вида:

 

 

Может существовать не более 2 таких классов. Веса связей и порог

s