Система уравнений Максвелла в сплошной среде. Граничные условия

Информация - Физика

Другие материалы по предмету Физика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



ованием левой части по теореме Остроградского-Гаусса в интеграл по замкнутой поверхности S, ограничивающей объём V.

 

 

2. Граничные условия

При решении задач электродинамики, учитывается, что все макроскопические тела ограничены поверхностями. При переходе через эти поверхности физические свойства макроскопических тел изменяются скачком и поэтому также скачком могут изменяться электромагнитные поля, создаваемые этими телами. Другими словами векторные функции и являются кусочно-непрерывными функциями координат, т.е. они непрерывны вместе со своими производными внутри каждой однородной области, но могут претерпевать разрывы на границах раздела двух сред. В связи с этим представляется удобным решать уравнения Максвелла (1) - (4) в каждой области, ограниченной некоторой поверхностью раздела отдельно, а затем полученные решения объединять с помощью граничных условий.

 

При нахождении граничных условий удобно исходить из интегральной формы уравнений аксвелла. Согласно уравнению (4) и теореме Остроградского-Гаусса:

 

, (16)

 

где Q полный заряд внутри объёма интегрирования.

 

Рассмотрим бесконечно малый объём в виде цилиндра с высотой h и площадью основания S, расположенный в средах 1 и 2 (рис. 2).

Соотношение (16) в этом случае можно записать виде:

(17)

здесь - нормаль к границе раздела двух сред, направленная из среды 2 в среду 1. Знак минус во втором слагаемом обусловлен тем, что внешняя нормаль поверхности интегрирования в среде 2 направлена противоположно нормали в среде 1. Пусть основание цилиндра стремится к границе раздела двух сред. Так как площадь боковой стремится к нулю, то , и поэтому (17) приобретёт вид:

(18)

где и - значения нормальных составляющих вектора по разные стороны поверхности раздела; - поверхностная плотность зарядов, избыточных по отношению к связанным зарядам самого вещества. Если поверхность раздела не заряжена, то в формуле (18) необходимо положить =0. Пользоваться понятием поверхностной плотности удобно тогда, когда избыточные (сторонние) заряды расположены в очень тонком слое вещества d, а поле рассматривается на расстояниях от поверхности r>>d. Тогда из определения объёмной плотности заряда следует:

= d = .

 

Если учесть, что , а - поверхностная плотность поляризационных зарядов, то формулу (18) можно записать в виде:

 

 

где , а величина , которая входит в граничное условие (18), есть поверхностная плотность зарядов, избыточных по отношению к связанным зарядам самого вещества.

Используя уравнение (2) и проводя аналогичные рассуждения, получаем граничное условие для вектора :

(19)

 

Выражения (18) и (19) граничные условия для нормальных составляющих векторов и . Чтобы получить условия для тангенциальных составляющих можно использовать уравнения (1) и (3). Умножим уравнение (3) скалярно на положительную нормаль к поверхности S, ограниченной контуром L, имеющим вид прямоугольника (рис. 3).

Используя теорему Стокса, получим:

 

 

Перепишем это уравнение в виде:

 

 

(20)

 

Здесь и - значения вектора соответственно в средах 1 и 2, - единичный вектор, касательный к поверхности раздела, - нормаль к поверхности раздела, направленная из среды 2 в среду 1.

Пусть теперь при малом, но фиксированном l. Тогда , и соотношение (20) примет вид:

 

 

и после сокращения на l имеем:

 

 

здесь . Вектор , как следует из рисунка 2, можно записать как в виде . Тогда

предыдущее выражение можно записать, как

 

.

 

Поскольку эта формула справедлива для любой ориентации поверхности , а следовательно, и

вектора , то имеем

 

(21)

 

В граничном условии (21) присутствует поверхностная плотность тока, избыточная по отношению к токам намагничивания. Если токи отсутствуют, то следует положить =0. Учитывая, что , а есть поверхностная плотность тока намагничивания, запишем формулу (21) в виде:

 

 

где .

 

Используя уравнение (1) и проводя аналогичные рассуждения, получаем граничные условия для вектора :

(22)

 

Таким образом, уравнения Максвелла (1) - (4) должны быть дополнены граничными условиями (18), (19), (21) и (22). Эти условия означают непрерывность тангенциальных составляющих вектора (22) и нормальной составляющей вектора (19) при переходе через границу раздела двух сред. Нормальная составляющая вектора при переходе через границу раздела испытывает скачок, тангенциальная составляющая вектора , если имеются поверхностные токи (21).

 

Ещё одно граничное условие можно получить, используя уравнение непрерывности (0) и уравнение (4), из которых следует:

 

Так как граничное усл

s