Система отопления в зданиях и сооружениях

Информация - Физика

Другие материалы по предмету Физика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



огочисленных технологических процессов (нагревания, плавления, сушки, выпаривания и т.д.).

Потребление тепловой и электрической энергии происходит неравномерно в течение суток, недели, года. Это связано с особенностью работы промышленных, коммунально-бытовых и сельскохозяйственных потребителей, электротранспорта.

Характер изменения потребления энергии удобно представлять в виде графиков тепловой и электрической нагрузок. Различают хронологические (календарные) графики и графики продолжительности нагрузки (рисунок 1).

Первый, с характерными максимумами и минимумами, отражает последовательность изменения нагрузки во времени. Второй показывает продолжительность времени, в течение которого имеются те или иные нагрузки. Например, минимальная нагрузка имеет место в течение всех 24 ч суток. Кроме суточных строят также недельные, месячные и годовые графики максимумов нагрузок.

 

Рисунок 1. Суточные хронологический график (а) и график продолжительности, (б) нагрузки

 

В зависимости от решаемых задач графики нагрузок могут характеризовать потребление энергии в энергетической системе в целом, отдельными потребителями в системе, отдельно на промышленном предприятии.

Изменение нагрузок может носить статический и динамический характер.

Статические нагрузки являются повторяющимися при неизменных составах потребителей и режимах потребления энергии.

Динамические нагрузки определяются изменением состава потребителей и режима потребляемой ими энергии.

Энергоустановки должны бесперебойно обеспечивать потребителей необходимым количеством энергии в соответствии с графиками нагрузки. Избыток электрической энергии можно передавать в сеть, в то время как теплоты должно производиться столько, сколько требуется потребителю. Иначе будут иметь место ее непроизводительные потери.

Наличие графиков нагрузки позволяет планировать оптимальную работу энергоустановок, которые имеют максимальный КПД на номинальном режиме. Это такой режим, который обеспечивает максимальную выработку энергии при минимальном потреблении первичной энергии в виде топлива.

Для того чтобы работа энергоустановок была эффективной, их разделяют по продолжительности работы на базовые, пиковые и полупиковые.

Базовые энергоустановки работают 6000-7000 ч в году, то есть практически постоянно. Они обеспечивают при работе на номинальном режиме покрытие части графика нагрузки с минимальным потреблением энергии Pmin.

Пиковые энергоустановки работают периодически до 2000 ч в год и запускаются для покрытия нагрузки в зоне между максимальной Рmaх и средней Рср нагрузками.

Полупиковые энергоустановки покрывают часть графика в области между Рср и Pmin.

Комплексное применение базовых и пиковых энергоустановок, в том числе и в блочном исполнении, позволяет наиболее эффективно использовать первичную энергию топлива, так как они работают в оптимальном режиме покрытия нагрузок с максимальным КПД.

Расчетный анализ содержания тепловой энергии в приходной и расходной частях энергетического баланса может быть выполнен на основе следующих соотношений:

- содержание химической энергии, теплота фазовых превращений, Ткал,

 

Qп = Мr 10-6,

 

где М - расход материального потока за рассматриваемый промежуток времени (час, год), кг или м3;

r - удельная химическая энергия, энергия фазовых превращений, ккал/кг или ккал/м3;

- теплосодержание материальных потоков, Гкал,

 

QM = Mc Т 10-6,

 

где с - массовая или объемная удельная теплоемкость материального потока М, ккал Дкгград) или ккал/(м3·град);

Т - температура потока, С;

- расход теплоты на отопление, Гкал,

 

QOT = q0V (Tвн - Toc) t 10-6,

 

где q0 - объемная отопительная характеристика объекта, ккал/(м2·ч·трад);

V- внешний объем объекта, м3;

Твн, Toc - температуры внутри и вне объекта, С;

t - рассматриваемый промежуток времени, ч;

- расход тепла на вентиляцию, Гкал,

 

QВ = qвV (Tвн - Toc) t 10-6,

 

где qB = mсb (Vb/V);

т - кратность воздухообмена, 1/ч;

св - объемная удельная теплоемкость воздуха, ккал/(м3·град);

Vb - вентилируемый объем, м3;

- потери теплоты с дымовыми газам, Гкал,

Одг =Vдг сдг Тдг 10-6,

где Vдг - выход дымовых газов на 1 м3 газообразного или на 1 кг твердого топлива, м3 /м3 или м3 /кг;

сдг - объемная удельная теплоемкость дымовых газов, ккал/(м3 ·град);

Тдг - температура дымовых газов;

- тепловой эквивалент электрической энергии, Гкал,

 

Q = W 0,86 10-6 ,

 

где W - подведенная (потребленная) за рассматриваемый промежуток времени (час, год) электрическая энергия, кВт.

На цели отопления и горячего водоснабжения в Республике Беларусь расходуется 40% от общего потребления топлива. Потенциал энергосбережения, по оценкам отечественных и зарубежных экспертов, в системах теплоснабжения республики составляет около 50%. Следовательно, за счет энергосберегающих мероприятий можно снизить потребление топлива на нужды теплоснабжения на 20% от общего потребления республикой. Именно поэтому одной из приоритетных задач действующей Государственной программы Энергосбережение для увеличения эффективности использования теплоты в системах отопления зданий необходимо внедрение системы регулирования отпуска тепла. Необходимость оперативного определения расхода теплоты и теплопотерь с особой остротой выявилась в последнее время в связи с требованием экономии то

s