Система моделювання Electronics Workbench

Методическое пособие - Компьютеры, программирование

Другие методички по предмету Компьютеры, программирование

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



тинах схеми (наприклад, провідники, шини даних до і після буферного елемента). Приклади такого оформлення можна знайти в каталогах готових схем (див. файл adc-dacl.ca4).

При позначенні компонентів необхідно дотримувати рекомендацій і правил, передбачених ЄСКД (єдиною системою конструкторської документації). Що стосується пасивних компонентів, то при виборі їхніх позначень особливих труднощів не виникає. Труднощі виникають при виборі активних елементів : мікросхем, транзисторів і т.п., особливо при необхідності використання компонентів вітчизняного виробництва, коли потрібно установити точна відповідність функціональних позначень висновків і параметрів закордонних і вітчизняних компонентів. Для полегшення цієї задачі можна скористатися таблицями відповідності закордонних і вітчизняних компонентів..

При імпортуванні в створювану схему іншої схеми або її фрагментів доцільно діяти в наступній послідовності:

командою File>Save As записати у файл створювану схему, указавши його імя в діалоговому вікні (розширення імені файлу вказувати не обовязково, програма зробить це автоматично);

командою File>Open завантажити на робоче поле імпортовану схему стандартним для Windows методом (деякі особливості описані наприкінці глави);

командою Edit>Select All виділити схему, якщо імпортується вся схема, або виділити її потрібну частину;

 

3. Елементна база

 

У цій главі приводяться короткі зведення про моделі компонентів радіоелектронної апаратури (РЕА), що є в програмі EWB. Додаткові зведення по таких компонентах будуть приводитися в інших главах у міру їхнього використання в конкретних схемах. Додаткова інформація про реальні елементи РЕА (умови й області застосування, класифікаційні параметри, конструктивні особливості й ін.) поміщені в додатку 2.

 

3.1 Джерела струму

 

У загальному випадку джерела токи можуть бути представлені у вигляді генератора напруги або генератора струму (див. розд. 5.1). Джерела струму поділяються на джерела постійного струму, змінного струму і керовані (функціональні) джерела. Крім того, вони підрозділяються на вимірювальні джерела і джерела для електроживлення.

Прикладом вимірювального джерела є розглянутий у гл. 3 функціональний генератор. З джерел постійного струму в якості вимірювального широко використовується так називаний нормальний елемент (електрохімічне джерело), що володіє високою стабільністю вихідної напруги і використовуваний у високоточних зразкових установках для перевірки вольтметрів, амперметрів і інших вимірювальних приладів (див. розд. 16.6).

Джерела для електроживлення є самими масовими пристроями (див. додаток 6). Їх прийнято поділяти на первинні і вторинні. До первинних джерел відносяться: електрогенератори, що перетворять механічну енергію в електричну, термоелектрогенератори, сонячні й атомні батареї, електрохімічні джерела. В вторинних джерелах струму виробляється перетворення струму первинного джерела (див. гл. 12).

Джерела постійного струму в програмі EWB представлені на мал. 3.1.

а)б) в) г)

Мал.3.1. Джерела постійного струму.

 

Мал.3.2. Вікно задання ЕРС джерелу живлення.

 

Ідеальний (із внутрішнім опір Ri = 0) джерело постійної напруги +5 В (мал. 3.1, а) призначений, в основному, для логічних схем. На мал. 3.1. показане ідеальне джерело постійної напруги. ЕРС задається в діалоговому вікні на мал.3.2 .

Значення параметрів джерела напруги, які характеризуються ЕРС (Pull-Up Voltage) і внутрішнім опором (Resistance) (мал. 3.1, в), установлюються допомогою діалогового вікна (див. мал. 3.3).

Мал.3.3. Вікно установки параметрів джерела живлення.

 

Установка струму ідеального джерела струму (мал. 3.1, г) виробляється аналогічно установці ЭРС. Джерела змінного струму в програмі EWB підрозділяються на джерела не модульованих (мал. 3.4) і модульованих (мал. 3.8) сигналів. Для ідеального генератора змінної напруги (мал. 3.4, а) напруга (Voltage), частота (Frequency) і початкова фаза (Phase) синусоїдального сигналу задаються у вікні на мал. 3.5.

а)б) в)

Мал.3.3. Джерела змінного струму.

 

Мал.3.5. Вікно установки параметрів джерела синусоїдальної напруги.

Мал.3.6. Вікно установки параметрів джерела імпульсної напруги прямокутної форми.

 

Установка струму, частоти і початкової фази ідеального генератора змінного струму (мал. 3.4, б) здійснюється аналогічно джерелу синусоїдальної напруги.

Ідеальний генератор імпульсної напруги (мал. 3.4, в) є джерелом полярних імпульсів із задаються амплітудою, частотою проходження і коефіцієнтом заповнення (Duty Cycle), (вікно на мал. 3.6).

При зазначеному на мал. 3.6 значенні коефіцієнта заповнення 50% (тривалість імпульсу дорівнює половині періоду) періодична імпульсна послідовність називається меандром. Такий сигнал може бути представлений у виді суми гармонійних складових (простих синусоїд) шляхом розкладання в ряд Фурє [35]:

 

U(x) = Um/2 + (2Um/7п)[cos(2п) - 0,333 cos(6 п F) + 0,2cos(10 п F) - ...]. (3.1)

 

Перший доданок вираження (3.1) постійній складовій, рівна половині амплітуди Um, перше доданок у квадратних дужках перша гармоніка, друге третя гармоніка і т.д. У графічному виді таке розкладання звичайне представляється у виді так називаного лінійчатого спектра, коли по осі X відкладається частота (номер гармоніки), а по осі Y у виді вертикальної лінії амплітуда гармоніки. Для одержання такого спектра засобами програми EWB 5.0 (див. гл. 1) необхідно скласти ланцюг із джерела (мал. 3.4, в), резистора, заземлення і

s