Система математических расчетов MATLAB

Методическое пособие - Компьютеры, программирование

Другие методички по предмету Компьютеры, программирование

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



size(C)

 

ans =

2 2 1 2

 

ndims(C)

ans =

4

 

 

Индексация

Многие концепции, используемые в двумерном случае, распространяются также на много-мерные массивы. Для выделения (обращения) к какому-либо одному элементу многомерного массива следует воспользоваться целочисленной индексацией. Каждый индекс указывает на соответствующую размерность: первый индекс на размерность строк, второй индекс на раз-мерность столбцов, третий на первую размерность страниц и так далее. Рассмотрим массив случайных целых чисел nddata размера 10х5х3:

 

nddata = fix (8*randn (10, 5, 3));

 

Для обращения к элементу (3,2) на странице 2 массива nddata нужно записать nddata(3,2,2).

Вы можете также использовать векторы как массив индексов. В этом случае каждый элемент вектора должен быть допустимым индексом, то есть должен быть в пределах границ, опре-деленных для размерностей массива. Так, для обращения к элементам (2,1), (2,3), и (2,4) на странице 3 массива nddata, можно записать

 

nddata (2, [1 3 4], 3).

 

Оператор двоеточия и индексирование многомерных массивов.

Стандартная индексация MATLAB-а при помощи оператора двоеточия (colon) применима и в случае многомерных массивов. Например, для выбора всего третьего столбца страницы 2 массива nddata используется запись nddata(:, 3, 2). Оператор двоеточия также полезен и для выделения определенных подмножеств данных. Так, ввод nddata(2:3,2:3,1) дает массив (мат-рицу) размера 2х2, который является подмножеством данных на странице 1 массива nddata. Эта матрица состоит из данных второй и третьей строки и сторого и третьего столбца первой стриницы многомерного массива. Оператор двоеточия может использоваться для индексации с обеих сторон записи. Например, для создания массива нулей размера 4х4 записываем:

 

C = zeros (4,4)

 

Теперь, чтобы присвоить значения подмножества 2х2 массива nddata четырем элементам в центре массива С запишем

 

C(2:3,2:3) = nddata (2:3,1:2,2)

 

Устранение неопределенностей в многомерной индексации

Некоторые выражения, такие как

 

A(:, :, 2) = 1:10

 

Являются неоднозначными, поскольку они не обеспечивают достаточного объема информа-ции относительно структуры размерности, в которую вводятся данные. В представленном выше случае, делается попытка задать одномерный вектор в двумерном объекте. В таких ситуациях MATLAB выдает сообщение об ошибке. Для устранения неопреденности, нужно убедиться, что обеспечена достаточная информация о месе записи данных, и что как данные так и место назначения имеют одинаковую форму. Например,

 

A(1,:,2) = 1:10.

 

 

Изменение формы (Reshaping)

 

Если вы не меняете форму или размер, массивы в системе MATLAB сохраняют размернос-ти, заданные при их создании. Вы можете изменить размер массива путем добавления или удаления элементов. Вы можете также изменить форму массива изменяя размерности строк, столбцов и страниц, при условии сохранения тех же элементов. Функция reshape выполняет указанную операцию. Для многомерных массивов эта функция имеет вид

 

B = reshape (A, [s1 s2 s3 ...] )

 

где s1, s2, и так далее характеризуют желаемый размер для каждой размерности преобразо-ванной матрицы. Отметим, что преобразованный массив должен иметь то же число элемен-тов, что и исходный массив (иными словами, произведение размеров массивов должно быть неизменным).

 

 

Функция reshape действует вдоль столбцов. Она создает преобразованную матрицу путем взятия последовательных элементов вдоль каждого столбца исходной матрицы.

 

 

Ниже в качестве примеров приведены несколько примеров массивов, которые могут быть получены из массива nddata (обратите внимание на размерности).

 

B = reshape(nddata,[6 25])

 

C = reshape(nddata,[5 3 10])

 

D = reshape(nddata,[5 3 2 5])

 

 

Удаление единичных размерностей.

Система MATLAB создает единичные размерности, когда вы задаете их при создании или преобразовании массива, или же в результате вычислений приводящих к появлению указан-ных размерностей.

B = repmat (5, [2 3 1 4] ) ;

size(B)

ans =

2 3 1 4

 

Функция squeeze удаляет единичные размерности из массива.

 

C = squeeze(B);

 

size(C)

ans =

2 3 4

 

Функция squeeze не оказывает воздействия на двумерные массивы векторы-строки оста-ются строками.

 

Вычисления с многомерными массивами

 

Многие вычислительные и математические функции MATLAB-а принимают в качестве аргументов многомерные массивы. Эти функции действуют на определенные размерности многомерных массивов, в частности, на отдельные элементы, векторы или матрицы.

 

Действия над векторами

Функции которые действуют над векторами, такие как sum, mean, и т.д., по умолчанию обы-чно действуют вдоль первой неединичной размерности многомерного массива. Многие из этих функций дают возможность задать размерность вдоль которой они действуют. Однако, есть и исключения. Например, функция cross, которая определяет векторное произведение двух ве

s