Система водоотведения поселка с мясокомбинатом

Информация - Экология

Другие материалы по предмету Экология

Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



о всплывшей жиромассы равно 80% от общего количества задержанного жира и определяется по формуле:

Vжм=0,8СоQ100/106(100-p)

где Vжм - объем всплывшей жиромассы, м3/сут;

Со - концентрация жира, задержанного в жироловке, мг/л;

Q - расчетный расход сточных вод, м3/сут;

p - влажность всплывшей жиромассы, %, p=80%;

- объемный вес жиромассы, т/м3, =0,887т/м3.

Vжм=0,8*187,2*41,12*100/106(100-80)0,887=0,035м3/сут

Частота вращения реактивного водораспределителя определяется по формуле:

n=34.78q106/(2d2Д60)

где n - частота вращения водораспределителя, с-1;

q - расход сточных вод, л/с;

d - диаметр патрубков реактивного водораспределителя, мм;

Д - диаметр жироловки, мм

n=34.78*1.428*106/(2*502*2000*60)=0.083c-1=5об/мин

По результатам произведенных расчетов запроектированно две жироловки (одна рабочая, одна резервная) объемом 4,28м.,диаметром 2м., высотой 3,5м., объем осадочной части 0,81 м3, диаметр трубопроводов для удаления осадка принят 100 мм, частота вращения реактивного водораспределителя 0,083 с-1, диаметр патрубков водораспределителя 50 мм. Объем осадка, образовавшегося в жироловке 0,7802 м3/сут, объем всплывшей жиромассы 0,0579 м3/сут

Расчет ЭКФ-установки

Расход сточных вод, поступивших на ЭКФ-очистку составляет 5,14 м3/ч. Принят один ЭКФ-аппарат, производительностью 5,14м3/ч. Продолжительность обработки сточных вод, в соответствии с рекомендациями( ) принята 15 мин, из них 5 мин или 0,08 ч- в камере электрокоагуляции, 10 мин или 0,17 ч в камере электрофлофации. Плотность тока в электрокоагуляторе iф =60А/м2, в электрофлотаторе iф =80А/м2. Напряжение постоянного тока 6В. Количество электричества на обработку воды Кэ=100 Ач/м2. Межэлектродное пространство в камере электрокоагуляции 20 мм.

Объем ЭКФ-устантвки определяется по формуле:

W=Q/t

где W - объем ЭКФ-установки, м3;

Q - расчетный расход сточных вод, м3/ч;

t - продолжительность обработки воды, ч.

W=5.14*0.25=1.285м3

Объем камеры электрокоагуляции равен:

Wк=5,14*0,08=0,41м3

Объем камеры электрофлотации равен:

Wф=5,14*0,17=0,87м3

Высота установки определяется по формуле:

H=h1+h2+h3

где H - полная высота установки, м;

h1 - высота слоя жидкости, считая от нижней кромки электродного блока до слоя пены, м. h1=0,8м;

h2 - высота слоя пены, h2=0,2м;

h3 - высота борта установки, м. h3=0,3м;

H=0.8+0.2+0.3=1.3м

Площадь зеркала воды в каждой камере определяется по формуле:

F=W/h1

где F - площадь зеркала воды, м2;

W - объем камеры, м3;

h1 - высота слоя жидкости, м.

Fк=0,41/0,8=0,51м2

Fф=0.87/0.8=1.09м2

Ширина установки принята 0,9 м. Тогда длина каждой камеры определяется:

L=F/B

где L - длина камеры, м;

F - площадь зеркала воды, м;

B - ширина установки, м.

Lк=0,51/0,9=0,57м

Lф=1,09/0,9=1,21м

Общая длина установки составляет:

L=Lк+Lф+L1

где L - общая длина установки, м;

Lк - длина камеры электрокоагуляции, м;

LФ - длина камеры электрофлотации, м;

L1 - длина распределительной и сборной камер, м.

L=0.57+1.21+0.3=2.08 м

Cила тока в камере электрокоагуляции определяется по формуле:

Jк=KэQ

где Jк - сила тока в камере электрокоагуляции, А;

Кэ - количество электричества, Ач/м3;

Q - расход сточных вод, м3/ч.

Jк=100*5,14=514 А

Количество электродов в камере электрокоагуляции определяется по формуле:

nк=(B-2а+С)/(В1+С)

где nк - количество электродов, шт;

В - ширина установки, м;

а - расстояние от стенки камеры до крайнего электрода, м. а=0,04 м;

С - межэлектродное пространство, м;

В1 - толщина электродов, м. В1=0,005м.

nк=(0.9-2*0.04+0.02)/(0.005+0.02)=34 шт

Активная площадь одного электрода в камере электрокоагуляции вычисляется по формуле:

f1=2*l1*h1

где l1 - длина электродов,м. l1=Lк-0,1=0,57-0,1=0,47 м.

h1 - высота электрода, м.

f1=2*0.47*0.8=0.75м

Активная площадь всех анодов (катодов) в камере электрокоагуляции составит:

fa=fк=0,75*34/2=12,75м2

Расход материала электродов определяется по формуле:

q=KвАJк/Q

где q - расход материала электродов, г/м3;

Kв - коэффициент выхода по току, Кв=0,4;

А - электрохимический эквивалент железа, г/Ач А=0,606 г/Ач;

Q - расход сточных вод, м3/ч

q=0.4*0.606*514/5.14=24.24г/м3

Сила тока в камере электрофлотации равна:

Jф=jф*fa2

где Jф - сила тока в камере электрофлотации, А;

jф - плотность тока в камере электрофлотации, А/м2;

fа2 - активная площадь горизонтальных электродов в камере электрофлотации, м2

fа2=fк2=(Lф-0,1)*(В-0,1)

где Lф - длина камеры электрофлотации, м;

В - ширина установки, м.

fа2=fк=(1,21-0,1)*(0,9-0,1)=0,89 м2

Jф=80*0,89=71,2 А

Вес блока электродов в камере электрокоагуляции определяется по формуле:

Мк=1*f1*nк*В1

где М1 - общая масса электродной системы, т;

1 - плотность материала электродов, т/м3, 1=7,86т/м3;

f1 - активная площадь одного электрода, м2;

nк - количество электродов, шт;

В1 - толщина электродов, м.

Мк=7,86*0,75*34*0,005=1,002т

Вес электродов в камере электрофлотации определяется по формуле:

Мф=2/*fa2*B2+2*fк2*В3

где Мф - общий вес электродов в камере электрофлотации, т;

2/ - удельный вес железа, т/м3 2/=7,86 т/м3;

В2 - толщина катодной сетки, м. В2=0,001м;

2 - удельный вес графита, т/м3, 2=1,5т/м3;

В3 - толщина анода, м. В3=0,04 м.

МФ=7,86*0,89*0,001+1,5*0,89*0,04=0,0604т=60,4кг

Продолжительность работы электродной системы в камере электрокоагуляции определяется по формуле:

T=K*Mк/Q*q

где T - продолжительность работы электродной системы, сут;

K - коэффициент использования электродов, К=0,8;

Mк - масса электродной системы, г;

Q - расход сточных вод, м3/сут;

q - расход материала электродов, г/м3

T=0.8*1002000/41.12*24.24=804.21сут=36,5мес

Общий расход электроэнергии составляет:

Wэ=J*U/1000*Q*

где Wэ - расход электроэнергии, кВтч/м3;

J - суммарное количество силы тока в установке, А;

U - напряжение постоянного тока, В;

Q - расход сточных вод, м3/ч;

- коэффициент полезного действия, =0,7

Wэ=(514+71,2)*6/100*5,14*0,7=0,98кВтч/м3

Расход электроэнергии за сутки составит:

Wэ сут=0,98*41,12=40,3 кВт/сут

Расход электроэнергии за год составит:

Wэ год=40.3*260=10478 кВт/год

Количество водорода, выделенного в процессе очистки, определяется по формуле:

Z=Aв*J/Q

где Z - количество водорода, выделенного в процессе очистки, г/Ач;

J - суммарная сила тока, А;

Q - расход сточных вод, м3/ч;

Aв - электрохимический эквивалент водорода, г/Ач

Z=0.037664*585.2/5.14=4.29гН2/м3

Объем пены, выделившейся в процессе очистки в соответствии с балансом загрязнений, составляет 1,2336 м3/сут или 0,1542 м3/ч, объем пенного продукта после гашения составляет 0,5757 м3/сут или 0,072 м3/ч.

На основании расчетов запроектировано два ЭКФ-аппарата (1 рабочий и 1 резервный). Объем аппарата составляет 1,285 м3, длина 2,08 м., ширина 0,9 м., рабочая глубина 0,8 м. Напряжение постоянного тока 6В, сила тока 585,2А, продолжительность работы электродной системы в камере электрокоагуляции 36,5 месяцев, годовой расход электроэнергии 10478 кВт. Подобран выпрямительный агрегат ВАКГ-12/6-1600 с размерами H=1717мм, L=758мм, B=910мм и массой 650 кг.

Расчет сооружений для обработки осадка и пены

Пена, образующаяся при ЭКФ-очистке на поверхности воды, сгребается специальным скребковым механизмом в лоток, куда поступает и жиромасса из жироловки. Из лотка образовавшаяся масса отводится в пеногаситель, оборудованный мешалкой, предназначенной для ускорения гашения пены. Количество образующейся пены составляет 1,2336 м3/сут, жиромассы 0,0579м3/сут. Тогда общий объем 1,2915м3/сут или 0,161м3/ч. Продолжительность гашения пены принята 30 минут.

Запроектирован один пеногаситель рабочим объемом 0,183 м3, высотой 0,8 м., диаметром 0,54м. Резервуар оборудован мешалкой ПМТ-16, частота вращения мешалки 48об/мин, электродвигатель марки АО2-22-4, мощность электродвигателя 1,5 кВт, масса 303,5кг. Количество пенного продукта, образующегося в пеногасителе, в соответствии с балансом загрязнений, составляет 0,5757 м3/сут, а вместе с жиромассой 0,6336 м3/сут или 0,0792 м3/ч. Для сбора пенного продукта из пеногасителя принят вакуум-сборник рабочей емкостью 0,09м3, диаметром 0,34м., высотой 1м.

Создание вакуума в вакуум-сборнике обеспечивается вакуум-насосом. Величина вакуума, потребного для засасывания пенного продукта принята 70% от барометрического. Потери напора в трубопроводе приняты 10% от величины вакуума, тогда максимальная геометрическая высота подъема составит 6,3м.

К установке принят насос марки ВВН-1,5 производительностью при 70% вакуума 1,55 м3/мин, с электродвигателем АО2-41-4 мощностью 4 кВт.

Объем воздуха, отводимого из вакуум-сборника для создания 70% вакуума, определяется по формуле

W=1.204*K*V

где W - объем отводимого воздуха, м3;