Система автоматического регулирования напряжения сварочной дуги

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



ные производные Uя. по переменным Ф и г в точке номинального режима:

 

 

Линеаризованная зависимость:

 

6)

 

7) Линеаризация зависимости вращающего момента на валу двигателя Мдв от тока якоря Iдв и величина потока возбуждения Фв, аналогична линеаризации уравнения п. 1, 5. Линеаризованная зависимость:

 

8)

 

9) Линеаризация зависимости скорости вращения якоря двигателя дв в магнитном потоке возбуждения Фв от противо-ЭДС Е проводится аналогично пп.1,5,7:

 

 

10) Линеаризация графически заданной величины магнитного потока возбуждения двигателя Фвд от тока возбуждения проводится аналогично пп. 3

 

 

11) Линеаризация уравнение связи тока возбуждения двигателя Iв с напряжением возбуждения Uв

 

 

12) Линеаризация скорость подачи электрода Vп от скорости двигателя дв

 

 

13) Линеаризация зависимость сопротивления сварочной дуги Rд и тока сварочной дуги Iд от напряжения трансформатора Uт аналогична п.1,5,7,9.

Пусть ,тогда исходное дифференциальное уравнение примет вид:

 

 

Линеаризованная зависимость примет вид:

 

14)

 

15) Линеаризованная зависимость величины зазора между электродом и подложкой L от суммарной скорости подачи электрода Vп и скорости сгорания подложки Vс

 

16)

 

17) Линеаризация напряжение сварочной дуги Uд от тока сварочной дуги Iд, а также от сопротивления сварочной дуги Rд аналогично пп. 1,5,7,9,13:

 

18)

 

19) Линеаризация уравнения связи тока возбуждения генератора I2 с напряжением потенциометра UR аналогично уравнению в п.2 для тока возбуждения генератора:

 

 

20) Линеаризация графически заданной величины магнитного потока возбуждения двигателя Ф2 от тока возбуждения проводится аналогично п. 3, 10:

 

6. Взвешенный сигнальный граф и структурная схема линейной математической модели САР

 

Для определения закона изменения во времени данной выходной величины необходимо исключить из системы уравнений все остальные переменные, являющиеся в данном случае промежуточными, и получить дифференциальное уравнение, связывающее рассматриваемую выходную переменную с входной, представленной заданной функцией времени в правой части уравнения.

Операции исключения промежуточных переменных из сложных дифференциальных уравнений очень трудоемки и громоздки. Поэтому возникает потребность упростить эти операции. С этой целью в линейных математических моделях САУ обычно используют операционную форму записи линейных дифференциальных уравнений, представляя уравнение каждой связи сигнального графа в виде так называемой передаточной функции.

Замена дифференциальных уравнений передаточными функциями позволяет представить систему линейных дифференциальных уравнений САУ в виде взвешенного сигнального графа, либо в виде структурной схемы.

Существенным ограничением на применение передаточных функций при исследовании линейных САУ является то обстоятельство, что передаточная функция линейного дифференциального уравнения ставит в соответствие каждой конкретной функции в правой части (входному сигналу) одно решение дифференциального уравнения, удовлетворяющее нулевым начальным условиям.

Для перехода к операторной форме записи необходимо оператор дифференциального уравнения d/dt заменить символом p, с которым в дальнейшем можно поступать как с сомножителем.

В операторной форме записи дифференциальное уравнение

 

примет вид

 

Вынеся переменные x(t)и y(t) за скобки в левой и правой частях, получим операторную форму дифференциального уравнения:

 

 

По своей форме это уравнение является алгебраическим, а не дифференциальным. Разрешим его относительно искомой переменной x(t), разделив обе части ни сомножитель

 

 

Мы получили очень наглядную запись линейного дифференциального уравнения.

Искомая переменная x(t) представлена как результат умножения независимой переменной y(t) на символический коэффициент

 

 

Этот коэффициент W(p) называется передаточной функцией данного дифференциального уравнения. Передаточная функция условно и в то же время наглядно отражает структуру и численные значения коэффициентов дифференциального уравнения, связывающего две переменные - независимую (входную) y(t) и искомую (выходную) x(t):

 

 

Таким образом, передаточная функция - его один из удобных способов записи линейного дифференциального уравнения.

Запишем в операторной форме систему линеаризованных дифференциальных уравнений исследуемой САР. Коэффициенты, возникающие при переходе к операторной форме записи, будем нумеровать по порядку К1, К2, К3,…(большими буквами без штрихов, нумерованные по порядку возрастания). Постоянные времени будем также нумеровать по порядку их возникновения Т1, Т2,…

Если уравнение не является дифференциальным, то его вид не изменяется:

 

  1. u1=K1х+ K2u3;

W1(p )=K1. W2(p )=K2.

где K1=.K1 и K2.=K2

 

2)Заменим оператор дифференцирования в левой части сомножителем р и вынесем за скобки переменную iвг. Разрешив полученное уравнение относительно iвг, получим запись дифференциального уравнения в виде передаточной функции:

 

где

3)1=K6 i; W4(p)=K6, где К6=К5.

4) =1+2

 

 

5) uя=K8+K7г ; W5(p)=K7; W6(p)=K8, где К7 =K7, K8=K6.

 

 

где

 

 

7)mqв=K12iдв+K13в; W8(p)=K12; W9(p)=K13, K12=K10, K13=K11.

 

 

 

 

  1. е=K17 г+K16в;

W12(p)=K17; W11(p)=K16, где K16=K13, K17=K14.

 

10) в=K18iв; W13(p)=K18, где K18=K15.

11)

где

12)

13)

где

14)

  1. ;

 

 

  1. 17) uд=K30iд+ K31rд;

W21(p )=K30. W22(p )=K31.

где K30=.K28 и K31.=K29

 

 

18)

19)

где

20) 2=K36i2; W25(p)=K26, K36=K33

21) uс=K37 uт ; W26(p)=K37, K37=K34

22)

 

Взвешенный сигнальный граф и структурная схема являются эквивалентными формами наглядного графического представления системы линейных дифференциальных уравнений САР. Как взвешенный граф, так и структурная схема используют запись дифференциальных уравнений связей в виде передаточных функций.

Взвешенный сигнальный граф по своей структуре почти полностью совпадает с исходным сигнальным графом (Рисунок 3), каждому его ребру приписан вес, имеющий вид передаточной функции. Взвешенный сигнальный граф САР напряжения сварочной дуги приведен на Рисунке 4.

Порядок построения структурной схемы линейной математической модели аналогичен порядку построения исходного сигнального графа. Сначала слева направо располагают основную цепочку связей переменных от сигнала задания к управляемой величине. Затем внизу справа налево строят цепочку главной обратной связи. После этого в произвольном порядке достраивают остальные связи математической модели.

Структурная схема САР напряжения сварочной дуги приведена на Рисунке 5.

 

7. Определение передаточных функций САР напряжения сварочной дуги

 

Дифференциальное уравнение, связывающее входную переменную линейной математической модели САР, соответствующей какой-нибудь внешней величине сигнального графа, с выходной переменной, соответствует одной из внутренних вершин, называется сквозным дифференциальным уравнением от входа к выхода. Сквозное дифференциальное уравнение называют также уравнением замкнутой системы от данного входа к данному выходу.

Передаточная функция, соответствующая сквозному дифференциальному уравнению, называется сквозной передаточной функцией САР от данного входа к данному выходу. Другое название передаточная функция замкнутой системы от данного входа к данному выходу.

Одним из входов математической модели САР является задающее воздействие. Этот вход называется главным входом. Аналогично среди выходов математической модели САР выделяют главный выход, под которым понимают регулируемую величину.

Сквозную передаточную функцию, связывающую главный выход модели САР с главным входом, называют главным оператором САР. Его обозначают Ф(р).

Для определения сквозной передаточной функции САР от заданного входа к заданному выходу необходимо положить равным нулю все прочие входные сигналы, что равносильно удалению из структурной схемы соответствующих цепочек элементов. Затем необходимо с помощью применения подходящих правил преобразования структурных схем привести структурную схему к простейшему виду - одному элементу, входной и выходной сигналы которого соответству