Система автоматического регулирования напряжения сварочной дуги

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



афа задает множество переменных, совместное изменение которых описывается данной моделью. Из них вершины, имеющие хотя бы по одному входящему ребру, соответствуют переменным, функции измерения которых во времени являются решениями системы дифференциальных уравнений (выходам модели). Такие вершины называются внутренними вершинами сигнального графа. Число внутренних вершин равно общему числу уравнений в системе.

Вершины, имеющие только исходящие ребра и не имеющие входящих ребер, соответствуют переменным, через которые передается влияние внешней среды на поведение САУ, т.е. задающему и возмущающим воздействиям (входам модели). Такие вершины сигнального графа называются внешними.

Математическая модель САУ призвана прежде всего устанавливать зависимость изменения во времени управляемой величины (Qn в случае САР температуры печи) от изменения во времени внешних воздействий. Число внешних вершин сигнального графа модели равно числу внешних воздействий, поэтому их число является заданным.

Внешние вершины сигнального графа представляют собой следующие сигналы:

Uз [B] сигнал задания;

Uс [B] напряжение сети трансформатора (питание дуги);

угловая скорость вращения генератора;

Uв [B] напряжение приложенное к обмотке возбуждения двигателя;

Х [м] параметр, характеризующий положение ручки потенциометра Rp1.

В минимальном варианте сигнальный граф математической модели САР содержит только одну внутреннюю вершину, соответствующую управляемой переменной (напряжению дуги). Однако, обычно разработка математической модели САУ начинается с построения наиболее подробного сигнального графа, множество внутренних вершин которого включает в себя как можно больше промежуточных переменных. Затем производится исключение мнимых внутренних вершин с помощью специальных правил преобразования сигнальных графов.

Внутренние вершины сигнального графа представляют собой следующие сигналы:

U1- напряжение возникающее при перемещении ручки потенциометра Rр1.

I1- ток возникающий в обмотке возбуждения генератора (1), зависящий от значения величины напряжения U1.

Ф1- магнитный поток возникающий в обмотке возбуждения генератора (1), пропорционально току I1.

Ф*- суммарный магнитный поток, зависящий от значений магнитных потоков Ф1 и Ф2.

UR- напряжение вырабатываемое генератором.

Iдв- ток протикающий через обмотку якоря двигателя, пропорционально напряжению вырабатываемого на генераторе.

М вращяющий момент двигателя, созданный взаимодействием Iдв и Фв.

Мс - момент сопротивления нагрузки на валу двигателя.

Ев- противо ЭДС якоря возникающая в результате пересечения витков обмотки якоря при его вращении с магнитным потоком обусловленным обмоткой возбуждения двигателя.

Фв- магнитный поток создаваемый Iв, проходящим через обмотку возбуждения двигателя.

Iв- ток в обмотке возбуждения двигателя, вызываемый Uв

дв- угловая скорость ротора двигателя, зависящая от М дв.

Vn скорость подачи электрода, зависящая от угловой скорости якоря двигателя и передаточного отношения редуктора.

L зазор между подложкой и электродом.

Vс скорость сгорания подложки.

Iд. - ток сварочной дуги.

Rд. сопрротивление сварочной дуги.

I2 ток, возникающий в обмотке возбуждения генератора (2), зависящий от величины напряжения Uдм.

Ф2 магнитный поток, возникающий в обмотке возбуждения генератора (2), пропорциональный току I.

Uдм. постоянное напряжение дуги на выходе выпрямительного моста.

Пояснение связей вершин в сигнальном графе (Рисунок 3) со ссылкой на соответствующие законы физики, электротехники и так далее будет дано в следующем пункте при непосредственных уравнений для данной САР.

 

4. Система дифференциальных уравнений

 

Структура системы дифференциальных уравнений САР полностью определяется ее сигнальным графом. Под структурой системы дифференциальных уравнений будем понимать, во-первых, множество функций времени, задаваемых извне, во-вторых, множество искомых функций времени, относительно которых составляется система дифференциальных уравнений и, в-третьих, список дифференциальных уравнений с указанием для каждого уравнения, какие функции времени являются для него заданными, а какая функция искомой.

Множество сигналов, задаваемых извне, полностью определяется множеством внешних вершин сигнального графа, а множество искомых сигналов - множеством внутренних вершин. Каждой внутренней вершине соответствует одно уравнение, причем сигнал, соответствующий этой вершине является для данного уравнения искомым. Ребра, входящие в данную вершину, указывают, какие сигналы являются заданными для данного уравнения. Таким образом, общее число уравнений равно общему числу внутренних вершин сигнального графа.

Уравнение, соответствующее некоторой вершине сигнального графа, должно определять значение или закон изменения физической величины, символически обозначаемой этой вершиной, если заданы значения или законы изменения во времени физических величин, соответствующих вершинам, из которых исходят ребра, ведущие в данную вершину. При составлении каждого уравнения необходимо отдавать себе отчет, насколько это уравнение идеализирует реальную связь данных переменных. Если мгновенное значение переменных, соответствующих исходным вершинам, полностью определяет мгновенное значение данной переменной, то уравнение имеет вид обычной функции, напр

s