Синтез та дослідження властивостей неорганічних сполук синтезованих на основі LaBa2Cu3O7 та SmBa2Cu3O7

Дипломная работа - Химия

Другие дипломы по предмету Химия

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



) введення різноманітних добавок.

В першому випадку спроби зводились, в основному, до зменшення тривалості обробки зразків при максимальних температурах. Це дозволило попередити ріст частинок вторинних фаз, який інтенсивно протікає вище перитектичної температури, і, очевидно, є одною з причин переходу від класичного MTG (Melt-Textured-Growth) метода до його модифікованих варіантів.

QMG (Quenched-Melt-Growth) метод став спробою “хімічного” посилення ступеня нерівноважності системи, при якій фаза 211 утворюється в області термодинамічної стабільності не за рахунок відносно повільного розпаду YBa2Cu3O7δ “знизу”, а в результаті швидкої взаємодії Y2O3 з розплавом “зверху”. Застосовані досліди з надшвидкого охолодження краплин високотемпературного розплаву (Y2O3 + L) в вакуумованій вертикальній металічній трубі є, певно, одним з найбільш вдалих прообразів технічного втілення цього методу.

Важливою альтернативою QMG методу може слугувати введення хімічних добавок, наприклад, платини (PDMG (Platinum-Doped-Melt-Growth)- метод) і діоксиду церію. При цьому утворення і розпад Pt-вмісних малостійких складних оксидів (Ba4CuPt2O9, R2Ba2CuPt2O8, R2Ba3Cu2PtO10 і ін.), мабуть, не тільки чинить дію на процеси зародкоутворення, але й гальмує ріст окремих граней кристалітів фази 211, чим змінює їх форму і розмір, а також попереджує коалесценцію в більш крупні агрегати.

Нарешті, в ряді методів (MPMG (Melt-Powder-Melt-Growth), PMP (Powder-Melt-Process)) використовують додаткове подрібнення як вихідних реагентів, так і проміжних продуктів синтезу, що призводить до підвищення ступеня їх диспергування і однорідності змішування. Зроблена успішна спроба використати високогомогенну суміш барій купрату та оксиду міді з оксидом ітрію, яка імітує фазовий склад QMG зразків (SLMG (Solid-Liquid-Melt-Growth)- метод). Ще однією, принципіально новою, модифікацією цього ж метода є направлена рекристалізація аморфізованого загартованого розплаву при температурах приблизно на 100оС нижче температури перитектичного розпаду фазу 123 (QDR (Quench and Directional Recrystallization)- метод), при якій достатньо швидко (3-5 хв) утворюється фаза 123 і ультра дисперсна “зелена” фаза, до того ж високого ступеня текстури надпровідної кераміки вдається досягнути за рахунок стандартних заходів зонного плавлення з пониженою температурою гарячої зони [6].

Позитивний ефект описаних вище нововведень стає більш зрозумілим, якщо врахувати багаточисельні експериментальні дані, що свідчать про те, що розмір частинок фази 211 повязаний з передісторією системи, незважаючи на використовувані при синтезі експериментальні дії [6]. Причиною цього вважають можливість проміжного утворення перегрітого метастабільного (конгруентного) розплаву фази 123, розпад якого на розплав і фазу 211 суттєво полегшується на різних дефектах структури, в основному на межах зерен, кількість яких набагато більше в дрібнокристалічному матеріалі. З іншого боку, надлишкова “зелена” фаза може слугувати інгібітором росту граней фази 123 при спіканні, призводячи до більш дрібнозернистої структури. Добавки (Pt, GeO2) лише змінюють поверхневу енергію на межі “фаза 211-розплав” і формують частинки фази 211 іншої морфології голкоподібної. Згідно з розглянутим вище механізмом це призводить до більш легкого “диспергування” анізотропних частинок фази 211 з фронтом кристалізації, що рухається і, в кінцевому результаті, до утворення більш дисперсних виділень фази 211 в матриці фази 123. Склад композиту регулювався шляхом “екстракції” надлишкового BaCuO2 із стехіометричного зразка фази YBa2Cu3O7δ пористою підкладкою, яка складається з Y2BaCuO5 (LPRP (Liquid-Phase-Removal-Process)-метод).

Таким чином, із аналізу літературних даних слідує [6,19], що одним із основних факторів модифікування “розплавних технологій” і універсальним критерієм їх еволюції виступає підвищення дисперсності та однорідності розподілу виділень вторинних фаз. Вплив фази 211 на мікроструктурні і функціональні характеристики зразків носить комплексний характер. Ці фази проявляють вплив на повноту протікання процесів при кристалізації, міцність матеріалу, морфологію зерен надпровідників і поява нових центрів пінінга. В кінцевому результаті це і призвело до суттєвого покращення функціональних параметрів матеріалів, що одержуються.

 

1.6 Роль газової атмосфери

 

Газообмін з навколишнім середовищем, як вже вище обговорювалось, повинен відігравати достатньо важливу роль при отриманні ВТНП-матеріалів. Зміна парціального тиску кисню дозволяє вирішити низку важливих задач:

- знизити температуру кристалізації і забезпечити сумісність розплаву з легкоплавкою підкладкою;

- змінити, спосіб створення перенасичення шляхом плавної зміни парціального тиску кисню, що може призвести до більш контрольованого перебігу процесу і до зменшення кількості домішок в кінцевому продукті;

- вирішити проблему “спінювання” і деформації матеріалу, який піддається розплавній обробці;

- забезпечити контроль ширини області гомогенності і впорядкування катіонів для твердих розчинів на основі фази 123.

Вплив парціального тиску кисню на технологічні процеси отримання ВТНП-матеріалів малодосліджений. При заниженому вмісті кисню спостерігали зниження температури перитектичного плавлення фази 123, а також виникнення легкоплавких евтектик [33] з участю Cu (I) (770-800 оС). Це дозволило знизити температуру вирощування монокристалів фази 123 (до 910оС при рО2=5. 102… 2. 104 Па), а також отримувати [7,9] товсті плівки з підшаром із срібла (Tпл.(Ag) ≈ 960 oC ) і достатньо щільні полікристалічні обємні зразки. Оригінальним синтетичним

s