Синтез та дослідження властивостей неорганічних сполук синтезованих на основі LaBa2Cu3O7 та SmBa2Cu3O7

Дипломная работа - Химия

Другие дипломы по предмету Химия

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



органічних сполук з стрічкового поживника.

Особливості першого методу полягають в сильному впливі парів розчинника на процес осадження плівок (термічний ефект окиснення розчинника, зниження парціального тиску кисню, підвищення парціального тиску вуглекислого газу та води). Проведений термодинамічний аналіз звів ці ефекти до мінімуму і дозволив оптимізувати умови осадження плівки в реакторі з холодними стінками і індукційним нагріванням підложки [1,16]. При цьому ρCO2 < 105 атм. і не шкодить фазоутворенню YBa2Cu3Oz при температурах < 800оС. Використання аерозольного джерела дозволяє досягнути високих швидкостей осадження, забезпечуючи [17] одночасно хороше відтворення складу і морфології плівок R123 і Bi2212.

Другий метод, що використовує компютерне керування процесом, полягає в нанесенні краплин органічного розчину, що містить леткі комплексні сполуки металів, в заданому співвідношенні на транспортерну стрічку із скловолокна. Пар, утворений за допомогою імпульсного нагрівання стрічки в вакуумній камері, направляється до підложки. Дозволяючи легко змінювати кількість речовин, що випаровуються за один імпульс, і склад пари від імпульсу до імпульсу, цей метод виявився надзвичайно зручним для отримання багатошарових плівкових структур складного хімічного складу [16].

Третя проблема, яка властива виключно MOCVD, полягає в цілеспрямованому пошуку речовин, які володіють високою і відтворюваною леткістю. Зазвичай найбільші труднощі повязані з переносом барію через парову фазу. Такі комплекси барію олігомеризовані як в твердій, так і в паровій фазі із-за координаційної ненасиченості Ba2+ і високої йонності звязку барій-кисень.

Четверта, технологічна, проблема повязана з необхідністю створення оптимальної морфології плівки. Так, при дослідженні впливу різних факторів на орієнтацію плівок виявлено, що введення надлишку сполук вісмуту і міді при рості плівок Ві2212 ВТНП сприяє формуванню зорієнтованих плівок, в то й час як введення надлишку лужноземельного елемента призводить до α-орієнтації плівки [17]. Вказане явище повязане з тим, що надлишок вісмуту і міді призводить до утворення рівноважної рідкої фази, або зміщує фігуративну точку складу до областей, де повинен бути присутнім розплав. Це підвищує рухливість компонентів плівки і сприяє формуванню термодинамічної більш стійкої С-орієнтації, в той час як в умовах кінетичного контролю реалізується α-орієнтація. Даний факт підтверджується експериментами з рідкофазної епітаксії. В загальному випадку, морфологія (полікристалічність, планарність, орієнтація плівки, наявність мікровключень не надпровідних фаз, мікротріщин і ін.) залежить від багатьох технологічних факторів, які повинні бути ретельно оптимізовані.

Серед найбільш актуальних задач технології MOCVD-плівок, що очікують вирішення, слід виділити:

нанесення плівок RBa2Cu3O7x на бікристалічні підкладки (SrTiO3 сапфір) і формування на їх основі певного виду структур (магнітометри і ін.);

отримання плівок ВТНП на підкладках великої (діаметром до 70 мм) площі;

вирішення проблеми двохстороннього in-situ нанесення плівок;

досягнення високих надпровідних характеристик в тонких плівках ВТНП на традиційних для електронної техніки підкладок (R-сапфір, Si) з використанням високоякісного буферного шару GeO2.

Останнім часом увагу привертають плівки різних “легких” РЗЕ123, оскільки у них можуть проявлятися ефекти пінінга на передвиділеннях продуктів фазового розпаду, а також ефекти стабілізації метастабільних фаз, підсилення критичних струмів в твердих розчинах. Друга актуальна і масштабна задача, у вирішенні якої технологія CVD без сумніву виявиться ключовою отримання покриттів з високою струмонесучою здатністю на покритих буферним шаром гнучких металічних стрічках із нікелю і його сплавів, текстурованих шляхом прокатування і випалювання (RABiTS (Rolling Assistant Biaxially Textured Substrates)).

 

1.3 Крупонкристалічна кераміка і монокристали. Особливості матеріалів на основі крупнокристалічної кераміки. Реальна структура

 

Створення будь якого матеріалу, як правило, базується на ідеї реальної структури з декількома ієрархічними рівняннями [18]. Мікрорівнем структурної організації високотемпературних надпровідників, який відповідає за їх фундаментальні властивості, є базова кристалічна структура. Специфіка мезорівня полягає в тому, що окремі кристаліти завжди небездоганні і розділені протяжними дефектами на більш дрібні субкристаліти (блоки мозаїки, області когерентного розсіювання). Нарешті, під макрорівнем розуміється ансамбль кристалітів (зерен, гранул) і пор.

Основним мікроструктурним мотивом крупнокристалічної кераміки є ансамбль крупних (в залежності від умов синтезу таких, що досягають величини 0,5 5 см.) псевдомонокристалічних утворень, розділених висококутовими гранями. Кожне таке утворення, не є істинним монокристалітом, а являє собою пакет тонких (5-50 мкм.) пластин YBa2Cu3O7δ “ламелей”, в якому відношення довжини до товщини досягає приблизно 1000. Розміщені паралельно один до одного пластини розділені малокутовими межами. Також треба відмітити, що реальна структура розплавних ВТНП- матеріалів характеризується наявністю різних протяжних дефектів, в тому числі: меж двійників, ультрадисперсних включень не надпровідних фаз, різних типів мікро- і макротріщин, що виникають із-за низьких пластичних властивостей фази YBa2Cu3O7δ , підвищеної концентрації дислокації. В принципі важливим є врахування всіх рівнів організації мікроструктури ВТНП-

s