Синтез системы радиального перемещения каретки

Контрольная работа - Компьютеры, программирование

Другие контрольные работы по предмету Компьютеры, программирование

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



ники скольжения заменены шариковыми подшипниками, имеют меньшее трение и большую точность задания движения. Это преимущество имеют также направляющие с V-образной канавкой, в которых размещаются шарики (линейный шарикоподшипник).

Привод каретки, исключая линейные приводы, состоит из обычного электродвигателя с редуктором и преобразователем вращательного движения в поступательное. Для получения более низкого уровня шума в редукторе используются, как правило, пластмассовые шестерни, а иногда применяется и ременная передача. Для преобразования вращательного движения в поступательное наиболее часто используются червячная передача, зубчатая рейка, зубчатый ремень, простой ремень (стальной или из синтетических материалов) и фрикционная передача.

Для качественной работы САРРП очень важно, чтобы между углом поворота мотора и смещением каретки не было мертвого хода. Наличие мертвого хода может привести к возникновению нежелательных в САРРП автоколебаний. Поэтому применяются передачи с люфтовыбирателями.

Если применяется линейный двигатель, то проблемы мертвого хода не возникает, поскольку управляющая сила действует непосредственно на каретку. Недостатком ЛЭД является его малая эффективность из-за большого диапазона смещения.

На рис. 2 показана кинематическая схема механизма перемещения каретки с использованием электродвигателей. Проблемы мертвого хода и преобразования вращательного движения в поступательное решаются с помощью натянутого зубчатого ремня, изготовленного из синтетического материала и имеющего сердцевину из стальной ленты. Это позволяет увеличить резонансную частоту передачи усилия от двигателя к каретке до 500 Гц и более. Направляющие выполнены с применением шарикоподшипников, обеспечивающих точное задание поступательного движения. Высокое значение резонансной частоты обеспечивается малой массой каретки, которая наряду с большой мощностью моторов позволяет получать очень высокие ускорения каретки. При этом появляется сила реакции, действующая на несущую конструкцию всего устройства, а это может привести к возникновению в ней нежелательных смещений и вибраций, ухудшающих работу всех САР. Для предотвращения этого и используются противовесы и два двигателя. Такая система привода позволяет скомпенсировать силы и моменты реакции. При близких характеристиках двигатели можно с приемлемой точностью рассматривать как один, с удвоенным моментом на валу.

 

Обычно используются электродвигатели постоянного тока с независимым возбуждением. Система уравнений для такого двигателя при управлении по цепи якоря имеет вид:

 

 

Lя + rяiя - Cе=U(1)

Смiя I =Mн (2)

Рис.3. Двигатель постоянного тока

 

где Lя и rя - индуктивность и сопротивление нагрузки якорной цепи;

iя - ток якоря;

I - момент инерции якоря;

Се и См - коэффициенты пропорциональности между скоростью вращения и противо-э.д.с и между током якоря и вращающим моментом.

 

Вводя оператор р= и решая уравнение относительно скорости вращения , получим

 

(3)

Для установившегося режима (р=0) получается зависимость

 

= , (4)

 

где k1 - коэффициент передачи двигателя по скорости;

- коэффициент наклона механической характеристики.

 

Данная зависимость представляет собой линеаризованные механические характеристики двигателя постоянного тока. Поэтому коэффициенты Се и См могут быть подсчитаны по паспортным данным двигателя

 

;, (5)

 

где Uном - номинальное напряжение двигателя;

0 - угловая скорость идеального холостого хода (при U=Uном и Mн=0);

Iном и Мном - номинальный ток якоря и вращающий момент.

 

В формуле (3) приняты обозначения:

- электромеханическая постоянная времени

 

(6)

 

где М0 - пусковой момент при номинальном напряжении U=Uном;

 

- постоянная времени якорной цепи (электромагнитная постоянная времени)

Тя=.(7)

 

Угол поворота двигателя может быть найден из формулы (3) интегрированием угловой скорости, что эквивалентно делению правой части (3) на оператор р:

 

=.(8)

 

Поскольку в рассматриваемой системе двигатель используется без редуктора, работая практически в заторможенном режиме с минимальными скоростями вращения, он превращается в датчик момента. Поэтому вращающий момент М может быть найден из уравнения (2), поскольку в установившемся режиме М=Мн , а 0, то

 

М=Смiя= (9)

 

В установившемся режиме (при р=0) получаем зависимость

 

М=k2U ,

 

где k2= - коэффициент передачи двигателя по моменту.

 

При питании цепи якоря двигателя от усилителя мощности с выходным сопротивлением rвых, в вышеприведенных формулах нужно везде вместо rя использовать сумму (rя + rвых).

Момент М на валу двигателя с помощью шкива преобразуется в пару сил, результирующая F которых действует на каретку, приводя ее в движение по направляющим. При этом, поскольку используется два двигателя

 

F=,(10)

 

где r радиус шкива.

Движение каретки по координате х описывается уравнением:

 

 

где - коэффициент сил вязкого трения,

или в операторной форме:

 

p(T1 p + 1)x = kF,

 

где T1 = ;

k = .

 

В процессе длительного считывания диска положение каретки регулируется таким образом, чтобы САРД работала в основном вблизи своего нейтрального (нулевого) положения. Для этого требуется сигнал положения, не

s