Синтез оптимальных уравнений

Курсовой проект - Математика и статистика

Другие курсовые по предмету Математика и статистика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



ае выхода объекта из рабочего состояния возвращали бы его в это рабочее состояние). Такие приборы (регуляторы, автоматические управляющие устройства и т. п.) сейчас очень распространены в технике, их изучением занимается теория автоматического управления.

Первым устройством этого рода был центробежный регулятор Уатта, сконструированный для управления работой паровой машины (см. рис. 9). Схема этого регулятора показана на рис. 7. В общем случае (рис. 8) на вход регулятора подаются фазовые координаты объекта.

Обычно требуется, чтобы переходный процесс (т. е. процесс перехода из начального фазового состояния x0 в предписанное состояние x1, рис. 5) был в определённом смысле наилучшим, например, чтобы время перехода было наименьшим или чтобы энергия, затраченная в течение переходного процесса, была минимальной и т. п. Такой наилучший переходный процесс называется оптимальным процессом. Термин оптимальный процесс требует уточнения, т. к. необходимо разъяснить, в каком смысле понимается оптимальность. Если речь идёт о наименьшем времени перехода, то такие процессы называются оптимальными в смысле быстродействия. Иначе говоря, процесс, в результате которого объект переходит из точки x0 в точку x1 (рис. 5), называется оптимальным в смысле быстродействия, если не существует процесса, переводящего объект из x0 в x1 за меньшее время (здесь и далее предполагается, что x1≠ x0). Разумеется, желательно, чтобы регулятор не просто возвращал объект в рабочее состояние, а делал это наилучшим образом, например, в смысле быстродействия (т. е. возвращал объект в рабочее состояние за кратчайшее время). В связи с этим в теории автоматического управления рассматриваются весьма различные регуляторы. Рассмотрение регуляторов приводит к тому, что уменьшение времени переходного процесса связано с усложнением конструкции регулятора; поэтому, усложняя конструкцию регулятора, можно лишь приближаться к идеальному, оптимальному регулятору, который во всех случаях осуществляет переходный процесс за кратчайшее время. В точности же оптимального регулятора, по-видимому, осуществить нельзя. Однако такой вывод является ошибочным, т. к. сейчас уже создали математический аппарат, рассчитывающий такие регуляторы. Можно предполагать, что оптимальные регуляторы будут играть важную роль в технике будущего.

  1. Уравнения движения объекта. Начнём с рассмотрения одного простого примера. Пусть G тело, которое может совершать прямолинейное движение (рис. 10). Массу этого тела будем предполагать постоянной и равной m, а его размерами будем пренебрегать (т. е. будем считать G материальной точкой.) Координату тела G (отсчитываемую от некоторой точки O той прямой, по которой оно движется) будем обозначать через x1. При движении тела G его координата x1 меняется с течением времени. Производная

    представляет собой скорость движения тела G. Будем предполагать, что на тело G действуют две внешние силы: сила трения ─и упругая сила ─ kx1 и что, кроме того, тело G снабжено двигателем. Развиваемую двигателем силу воздействия на тело G обозначим через u. Таким образом, по второму закону Ньютона движение тела G с течением времени будет описываться дифференциальным уравнением

Обозначив скорость движения через x2 (т. е. положив ), мы сможем записать этот закон движения в виде следующей системы дифференциальных уравнений:

(1.1)

Здесь величины x1, x2 являются фазовыми координатами тела G, а величина u управляющим параметром, т. е. мы имеем объект, схематически изображённый на рис. 11.

Уравнения (1.1) представляют собой закон изменения фазовых координат с течением времени (с учётом воздействия управляющего параметра), т. е. представляют собой закон движения фазовой точки в фазовой плоскости.

Мы рассмотрели лишь один частный случай, но можно было бы указать целый ряд других примеров, в которых закон движения объекта описывается дифференциальными уравнениями. Чаще всего (см.(1.1)) эти уравнения дают выражения производных от фазовых координат через сами фазовые координаты и управляющие параметры, т. е. имеют вид

(1.2)

где f1, f2,…, fn некоторые функции, определяемые внутренним устройством объекта.

В дальнейшем мы сосредоточим своё внимание именно на таких объектах (рис. 2), закон движения которых описывается системой дифференциальных уравнений вида (1.2). В векторной форме систему (1.2) можно записать в виде

(1.3)

где x ─ вектор с координатами x1,…, xn, u вектор с координатами u1,…, ur и, наконец, f(x, u) вектор, координатами которого служат правые части системы (1.2).

Разумеется, невозможно решить систему дифференциальных уравнений (1.2) (т. е. найти закон движения объекта), не зная каким образом будут меняться с течением времени управляющие параметры u1, u2,…, ur. Напротив, зная поведение величин u1, u2,…,ur, т. е. зная управляющие функции u1(t), u2(t),…, ur(t) для t>t0 мы сможем из системы уравнений

(1.4)

или, что то же самое, из векторного уравнения

(1.5)

однозначно определить движение объекта (при t>t0), если нам известно начальное фазовое состояние объекта (в момент t=t0). Иначе говоря, задание управления u(t) и начального фазового состояния x0 однозначно определяет фазовую траекторию x(t) при t>t

s