Синтез и физико-химические свойства магний - алюминиевого сорбента со структурой гидроталькита

Статья - Биология

Другие статьи по предмету Биология

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



ом пространстве пропорциональны их

подвижностям во внешнем растворе.

4. Изотерма обмена может быть представлена в ленгмюровском виде.

5. Гранулят предполагается монодисперсным, форма гранул - сферическая.

Кинетическая кривая сорбции хлорид - ионов на СОГ магния и алюминия представлена на рис. 3

Е,ммоль/г

 

 

 

 

 

 

 

 

t. сек

Рис. 3 Кинетическая кривая сорбции хлорид - ионов на СОГ магния и алюминия

На кинетической кривой обнаружены два кинетических участка: первый участок отвечает диффузии ионов в макропорах сорбента, на втором участке наблюдается более медленный обмен хлорид-ионов, что, на наш взгляд, вызвано анионным обменом в межслоевых пространствах. Полученные кинетические данные свидетельствуют о высокой скорости химических реакций, приводящих к извлечению анионов из раствора, а также о том, что данные материалы могут быть использованы в процессах очистки сточных вод.

В четвертой главе представлен алгоритм и программа расчета динамики сорбции. Для исследований применен метод, основанный на фильтровании через короткие слои сорбента.

Исследование проводили следующим образом: колонку диаметром 20мм и длиной 400мм загружали исследуемым сорбентом с заданной толщиной слоя и установленным ранее диаметром зерен 2,5-3мм. Фильтрование модельных стоков проводили с заданными концентрациями ионов. Скорость фильтрования поддерживали медицинским дозатором. Пробы фильтрата для анализа отбирали через каждые 20 минут. Концентрацию определяли фотоколориметрическим методом анализа, рН контролировали рН-метром.

На первом этапе исследования толщина слоя сорбента (l) составляла l=400мм. Скорость фильтрования устанавливали υ1=2м/ч, υ 2=3м/ч, υ4=4м/ч. Эффективность очистки стоков во времени оценивалась уровнем проскоковой относительной концентрации (U) ионов в фильтрате, которая определяется соотношением:

U=Сф/С0 ,

где Сф-концентрация ионов в фильтрате;

С0- концентрация ионов в воде, поступающей на фильтрацию.

Процесс фильтрования прекращали, когда уровень проскоковой относительной концентрации стабилизировался. Следующая серия опытов проводилась аналогично, но постоянными оставались концентрация ионов и скорость υ3 =3 м/ч.

В качестве теоретической основы экспериментального определения параметров сорбции использовали математическую модель Петрова, позволяющую описать экспериментально полученные закономерности. При разработке модели использовали методы, позволяющие решить систему дифференциальных уравнений, предложенные Е.В.Венециановым и Е.Г.Петровым.

При проведении опыта известными и постоянными величинами являются: толщина слоя сорбента l, средний диаметр зерен d, скорость фильтрования (υ). Кроме этого постоянными, но неизвестными величинами являются коэффициенты, характеризующие процесс сорбции.

Этими параметрами являются коэффициент внешней диффузии β и кинетические параметры: коэффициент внутренней диффузии D и критерий, учитывающий относительный вклад внешней и внутренней диффузии Н (критерий Био). Массообменным (емкостным) коэффициентом, характеризующим распределение адсорбированного вещества, является коэффициент Генри Г.

Критерий Био равен

(1) ,

безразмерная толщина (Х) слоя сорбента равна

(2).

Связь между безразмерным (Т) и реальным(t) временем сорбционного процесса определяется по формуле:

(3) ,

откуда следует однозначное соответствие этих времен.

После логарифмирования последнего соотношения получим:

(4)

Из выражения (4) следует, что в логарифмической системе координат эта связь становится аддитивной, и однозначное соответствие времен может быть установлено продольным смещением временных осей относительно друг друга. Методика сопоставления экспериментальных и теоретических кривых следующая: в результате фильтрования через слой сорбента получают экспериментальные точки зависимости

uэ=f(tэ) (5),

где uэ-экспериментально определенная относительная концентрация ионов в фильтрате; tэ-время, отсчитываемое с начала фильтрования.

Экспериментальные точки этой зависимости наносили на билогарифмическую сетку (рис.4), полностью аналогичную сетке теоретических кривых добиваясь при этом путем перемещения графиков вдоль осей времени наилучшего совпадения экспериментальных точек с одной из теоретических кривых U=F(X,T) при Н=const до соблюдения равенства uэ=U.

 

Рис.4 Наложение экспериментальных точек фильтрования на теоретические кривые динамики сорбции из жидких сред для [Fe(CN)6]3-.

Проведенные исследования позволили расчетным путем провести количественную оценку относительной способности ионов адсорбироваться полученным сорбентом, и на основе сопоставления расчетных и экспериментальных данных определить эффективность теоретических прогнозов и выявить те факторы, влияние которых приводит к отдельным отклонениям.

Выводы

1. Разработана новая методика синтеза сорбента на основе гидроксидов магния и алюминия со структурой гидроталькита с использованием золь-гель процесса.

2. Определены адсорбционно-структурные характеристики СОГ (удельная поверхность -135м2/г), общий объем пор - 0.34см3/г, распределение пористости по эквивалентным радиусам), позволяющие предложить синтезированный совместно осажденный гидроксид магния и алюминия в качестве неорганического ионообменника. Величину удельной поверхности образца определяли по низкотемпературной адсорбц

s