Синтез и физико-химические свойства магний - алюминиевого сорбента со структурой гидроталькита

Статья - Биология

Другие статьи по предмету Биология

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



льными группами на поверхности сорбента, так и с гидроксильными группами, принадлежащими внутреннему объему фазы СОГ гидроксидов. Причем в данном случае полизарядные анионы могут обмениваться на гидроксо-группы гидроксидных слоев, связанных напрямую с атомами металла и, компенсируя оставшимся зарядом положительный заряд слоев, переходить в неионообменное состояние. Количество ионообменных ионов при этом уменьшается.

Цианидные комплексные анионы железа (II,III) характеризуются высокой устойчивостью, они практически не гидролизуются в водных растворах. Рассмотрим результаты сорбции ионов [Fe(CN)6]4- и [Fe(CN)6]3- на СОГ (табл. 3). Следует отметить, что принципиальных различий в поведении ионов [Fe(CN)6]4- и [Fe(CN)6]3- не обнаружено. Исследование эквивалентности ионного обмена показало, то в обмене могут участвовать не только анионы, но и катионы щелочных металлов, при этом образуются смешанные гексацианоферраты Mg-К.

Таблица 3

Результаты сорбции и десорбции [Fe(CN)6]4- на СОГ

Значения Е, ммоль [Fe(CN)6]4-/ г СОГ123СорбцияДесорбцияСорбцияДесорбцияСорбцияДесорбция0,680,560,550,380,420, 37

Образование новой фазы KMg[Fe(CN)6] подтверждено результатами рентгенофазового анализа. ИК-спектр продукта сорбции ионов [Fe(CN)6]3- СОГ магния и алюминия при рН > 10 включает полосу поглощения при 2100 см-1, которую можно отнести к колебаниям гексацианоферрат (III) ионов. Однако в ИК-спектре продукта сорбции при рН исходного раствора ниже 9 наблюдаются две полосы поглощения при 2170 см-1 и 2100 см-1, что характерно для мостиковых групп -CN- , свойственных смешанному гексацианоферрату. При сорбции [Fe(CN)6]4- образование смешанного гексацианоферрата происходит при рН < 10,5. Расщепление полос в спектре [Fe(CN)6]4- носит более сложный характер, что, вероятно, может быть связано с частичным окислением кислородом воздуха железа (II) в комплексе.

Изучение сорбционных свойств СОГ магния и алюминия по отношению к Hg(II) показало, что наибольшая эффективность сорбции Hg(II), достигнутая в интервале значений концентраций Hal от 10-2 до10-3 моль / л соответствует раствору, в котором Hg(II) присутствует в формах HgСI2 и HgОНСI, при переходе к комплексным формам значение сорбционной емкости уменьшается от 34 до 21 мг Hg(II) / г СОГ. При увеличении концентрации ионов хлора больше чем в 4 раза сорбционная емкость также уменьшается (с 21 до 14 мг Hg(II) / г СОГ), при дальнейшем увеличении концентрации ионов СI значение сорбционной емкости уменьшается незначительно. Исходя из полученных экспериментальных данных можно предположить, что поглощение ионов [HgНаI3]-, [HgНаI4]2- может происходить за счет ионного обмена:

≡+Ме- ОН + [HgHaI3 ] ≡+МеHal- HgHaI2 + ОН ,

то есть в отсутствии гидролизованных форм Hg(II) в растворах можно предположить ионообменный механизм сорбции. Повышение Е для гидролизованных форм Hg(II) связано с тем, что в данном случае образуются поверхностные внутрисферные комплексы AIOHgCI и AIOHgOHCI. Следует отметить понижение сорбции Hg(II) из растворов, содержащих ионы Br- и I- (табл.4), что можно объяснить повышением устойчивости комплексов [HgНаI3]- , [HgНаI4]2- (рК [HgBr3]=19,7; рК [HgBr4]2-=21,0; рК [HgI3]=27,6; рК[HgI4]2 =29,8).

Таблица 4.

Результаты сорбции Hg(II) из растворов, содержащих ионы НаI

Анион в раствореCI-Br-I-Е, мг Hg(II)/г СОГ

24,6

15,4

8,3

Установлено, что по мере роста ионообменного механизма поглощения Hg (II) увеличивается доля десорбированной ртути (табл.5).

Таблица 5

Экспериментальные данные десорбции анионов раствором Na2 НРO4

 

Анион[HgСI4]2[HgBr4]2-[Hg I4]2-Степень

десорбции, %

45

68

98

На основании полученных данных можно сделать вывод, что взаимодействие ионов CrO4 2- и [Hg I4]2- происходит по ионообменному механизму, а в случае остальных анионов могут происходить специфические реакции (образование основных солей и смешанных гексацианоферратов), сопровождающие ионный обмен.

При изучении кинетики сорбции анионов на полученном сорбенте для реализации анионного обмена в чистой форме в качестве модельных анионов использовали галогенид ионы. Ионный обмен проводили из раствора КС1 с концентрацией 0.001 М, при температуре 23С, рН раствора 9,0. Отсутствие влияния стадии стока ионов в твердую фазу сорбента было подтверждено экспериментально путем последовательного уменьшения размеров гранул и определением скорости поглощения хлорид-ионов для каждой из выделенных фракций. Анализ зависимости скорости ионного обмена от размера гранул подтвердил, что кинетика лимитируется стадией диффузии в поровом пространстве гранул.

Для описания экспериментальных данных кинетики ионного обмена использована математическая модель, предложенная профессором Вольхиным В.В., которая основывается на следующих предположениях:

1. Кинетика обмена хлорид-ионов на СОГ магния и алюминия

лимитируется стадией диффузии ионов в поровом пространстве гранулы.

2. Гранулы СОГ магния и алюминия представляют собой агломераты из кристаллитов. Пространства между ними составляют макропоры,

заполненные раствором, по которым обеспечивается транспорт ионов

внутрь гранулы из внешнего раствора. Снижение коэффициента диффузии

внутри пор, составляющих каналы, объясняется меньшей проницаемостью

гранул, извилистостью каналов, по которым диффундируют ионы, их

взаимодействием со стенками пор, где возможно образование двойного

электрического слоя, повышенной вязкостью раствора в порах.

3. Коэффициент взаимодиффузии ионов в поровом пространстве

гранулы определяется согласно модели Туницкого-Гельфериха, при этом

подвижности ионов в поро

s