Синергетика как наука о самоорганизации

Информация - Физика

Другие материалы по предмету Физика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



КЫРГЫЗСКО-РОССИЙСКИЙ СЛАВЯНСКИЙ УНИВЕРСИТЕТ

ЕСТЕСТВЕННО-ТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

РЕФЕРАТ НА ТЕМУ:

СИНЕРГЕТИКА КАК НАУКА О САООРГАНИЗАЦИИ

 

 

 

 

 

 

 

 

 

 

 

 

 

ВЫПОЛНИЛ СТУДЕНТ ГР. ИВТ-1-97

ШИЛОВ ПАВЕЛ

 

 

 

 

 

 

 

 

 

 

 

 

 

БИШКЕК 2000

 

СИНЕРГЕТИКА КАК НАУКА О САООРГАНИЗАЦИИ.

 

 

Свое видение данной темы я бы хотел начать с рассмотрения непосредственно основных свойств эволюционных процессов и их отличий от динамических и статистических процессов и явлений в природе, т.к. для понимания о чем в дальнейшем будет идти речь совершено необходимо освещение данных вопросов.

И так, эволюционные процессы характеризуются необратимостью во времени и случайностью изменения хода процесса. Канонической иллюстрацией этих свойств является теория Дарвина. Эволюционные процессы представляют собой разновидность динамических процессов (процессов протекающих во времени).

В физике описание динамических процессов осуществляется с помощью систем дифференциальных уравнений. Традиционно как примеры динамических процессов почти во всех учебниках приводятся: движение маятника или движение одного тела в поле тяготения другого. Эти примеры, однако, являются лишь частным случаем динамических систем это, так называемые консервативные системы. Их отличительной чертой являет обратимость во времени - система дифференциальных уравнений, описывающая динамический процесс, инвариантна относительно обращения времени. Обратимость процессов во времени имеет интересные последствия.

Консервативные динамические системы принято делить на интегрируемые и неинтегрируемые. Система дифференциальных уравнений проинтегрирована, если найден полный набор ее первых интегралов. Первым интегралом называют функцию, которая сохраняет постоянное значение на всей траектории, определяемой уравнениями движения. Первым интегралом является, например, полная энергия системы. Динамическая система называется интегрируемой, если все ее первые интегралы аналитические функции координат и скоростей. Первые интегралы позволяют найти состояние системы в любой момент времени, если известно ее состояние в какой-либо предыдущий момент времени. Для интегрируемых систем, т.о. задание состояния системы в один из моментов времени фактически соответствует заданию всей прошлой и будущей истории системы. Это позволяет говорить о предопределенности (детерминированности) поведения интегрированной системы. Так, указанное выше движение одного тела в поле тяготения другого описывается двумя интегралами интегралом энергии и импульса.

Число первых интегралов совпадает с числом независимых динамических переменных, описывающих состояние системы, которые называются степенями свободы. Структура любой системы характеризуется распределением энергии по внутренним степеням свободы. В интегрируемых консервативных системах это распределение энергии либо остается неизменным, либо периодически меняется, - т.е. в интегрированных системах не происходит смены структур, и система рано или поздно возвращается в начальное состояние. Иными словами интегрируемые консервативные системы не эволюционируют.

В конце прошлого века (1892г.) Пуанкаре доказал существование неинтегрируемых систем - суть его выводов заключалась в том, в системе, описываемой дифференциальными уравнениями, может появиться стохастическое движение (об этом в следующих рефератах). Неинтегрируемая система имеет также полный набор первых интегралов, но не все они являются аналитическими функциями.

Примером неинтегрированной системы являет движение трех тел в поле тяготения друг друга траектории тел становятся очень сложными и запутанными.

Характерной чертой неинтегрированных систем является отсутствие симметрии между прошлым и будущим - неинтегрированная система эволюционирует во времени! Эволюционные свойства неинтегрируемых систем определяются в основном характером взаимодействия в системе. Систему, в которой стохастичность траекторий есть следствие внутренних взаимодействий, а не случайных внешних воздействий называют динамическим хаосом - движения частиц воспринимаются наблюдателем как случайные блуждания.

Другим классом физических систем являются диссипативные системы. Диссипативные физические системы также приводят к необратимым процессам. "Ярче всего различие между консервативными и диссипативными системами проявляется при попытке макроскопического описания последних, когда для определения мгновенного состояния системы используются такие коллективные переменные, как температура, концентрация, давление и т.д. При рассмотрении поведения этих переменных выясняется, что они не инвариантны относительно операции обращения времени. В качестве простейших примеров диссипативных процессов обычно рассматриваются теплопроводность и диффузия.

В случае изолированных систем, в которых нет никаких обменов с внешней средой, необратимость выражена знаменитым вторым законом термодинамики, в соответствии с которым существует функция пер

s