Сингулярные интегралы

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



нкции f (x) служит ряд

,(2)

где

, .(3)

Во введении предполагали, что . Это предположение обеспечило существование коэффициентов Фурье функции f (x) в любой ортонормальной системе. Но функции системы (1) ограничены. Поэтому коэффициенты (3), а с ними и ряд (2), можно образовать для любой суммируемой функции.

Вопрос о сходимости ряда (2) приводится к исследованию некоторого сингулярного интеграла. Если , то, в силу (3), .

Выведем формулу для упрощения выражения в скобках. Для этого сложим равенства

(k=0, 1, …, n-1),

.

Это дает , откуда следует равенство

,(4)

Пользуясь этой формулой, придадим сумме вид

.(5)

Этот интеграл есть сингулярный интеграл Дирихле.

Рассмотрим вопрос о суммировании ряда (2) по способу Чезаро. Этот способ состоит в отыскании предела среднего арифметического первых n сумм :

.(6)

В случае сходимости ряда (2) в точке x последовательность сходится к сумме ряда, но эта последовательность может сходиться и тогда, когда ряд (2) расходится.

Для исследования преобразуем ее с помощью формулы (5)

.

Но .(7)

Действительно, складывая равенства

(k=0, 1, …, n-1),

находим , откуда и следует (7).

С помощью (7) получаем .(8)

Интеграл (8) есть сингулярный интеграл Фейера. Покажем, что для него выполнены условия теоремы Фаддеева.

Для этого рассмотрим функцию f (t)=1. Вычисляя ее коэффициенты Фурье по формулам (3), получим (k=1, 2, …).

Значит, для этой функции (n=0, 1, 2, …), а следовательно и .

Но выражая интегралом Фейера, получим, что

.(9)

Заметив это, рассмотрим точку . Пусть . Если , то , и, следовательно, , где A(x, α) не зависит от n.

Отсюда следует, что .

Аналогично убедимся, что интеграл стремится к нулю по промежутку [β, π]. Сопоставляя это с (9), находим, что

,

так что функция есть ядро.

Для этого ядра можно построить горбатую мажоранту. Заметим, что . Отсюда . Но .

Следовательно и

.(10)

С другой стороны, когда , то , так что

.(11)

Так как , , то может оказаться и больше, чем . Но это несущественно. Если положим , , то разность между интегралом Фейера (8) и интегралом

при возрастании n стремится к нулю (т. к., например, при будет ), поэтому все рассуждения можно вести для интеграла .

Из (10) и (11) следует, что

.

Функция есть горбатая мажоранта ядра Фейера.

Но , т. е. интегралы от мажоранты ограничены числом, не зависящим от n.

Итак, интеграл Фейера удовлетворяет условиям теоремы

Д. К. Фаддеева. Отсюда следует

Теорема 1 (Л. Фейер А. Лебег). Почти везде на [-π, +π] будет

.(12)

Это соотношение выполняется во всех точках Лебега и тем более во всех точках непрерывности функции f (t), лежащих внутри [-π, +π].

Тригонометрическая система полна. Это означает, что всякая функция , у которой все коэффициенты Фурье (3) равны нулю, эквивалентна нулю. Избавимся от ограничения, что f (x) суммируема с квадратом. Справедлива следующая

Теорема 2. Если все коэффициенты Фурье (3) суммируемой функции

f (x) равны нулю, то f (x) эквивалентна нулю.

В самом деле, в этом случае и, следовательно, f (x)=0 во всех точках, где имеет место (12), т. е. почти везде.

Теорема 1 позволяет делать некоторые высказывания и о поведении сумм . Для этого заметим, что

,

так что .

Отсюда .

 

 

4. Сингулярный интеграл Пуассона

Пусть точка x есть точка d суммируемой функции f (t), если в этой точке производная неопределенного интеграла функции f (t) равна f (x) (причем ).

Интеграл (0<r<1) есть сингулярный интеграл Пуассона. Если x (-π<x<π) есть точка d суммируемой функции f (t), то (П. Фату).

1) Докажем, что - ядро. Т. к. ядро является 2π-периодической функцией, то интеграл от этой функции, рассматриваемый на периоде, не зависит от x. Рассмотрим при x=0.

.

Для вычисления интеграла используем универсальную тригонометрическую подстановку и получим

.(1)

Обозначим , тогда , а .

Выражение (1) будет равно

при 0<r<1.

Получили, что и - ядро.

2) Докажем, что .

, .

Тогда . Следовательно достаточно проверить, что .

Найдем такое, что на интервале [x-, x] ядро возрастает, а на [x, x+] убывает. Это возможно, т. к. производная функции меняет знак с плюса на минус при переходе через точку x: .

Возьмем ε>0 и найдем такое δ (0<δ<), что при будет , что возможно, так как x есть точка d, т.е. f (t) в точке t=x есть производная своего неопределенного интеграла.

 

Тогда по лемме И. П. Натансона

, т. к. есть ядро, и .

Таким образом, на интервале [x, x+δ] справедливо неравенство . На [x-δ, x] интеграл рассматривается аналогично в силу симметричности ядра на интервале [x-δ, x+δ] относительно точки x.

Рассмотрим за пределами [x-δ, x+δ], т.е. на

[-π, x-δ,] и на [x+δ, π].

В этих случаях выполняются неравенства

, .

Тогда и .

Следовательно , т. к. , и знаменатель дроби не равен нулю.

Аналогично .

То есть на интервалах [-π, x-δ,] и [x+δ, π].

При r, достаточно близких к 1, получим

и .

При этих r окажется ,

так что и .

Таким образом, доказано, что (0<r<1) есть сингулярный интеграл.

Литератур

s