Сингулярные интегралы

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



м произвольное и найдем такое , что при будет . Считая, что , представим в форме

.

Интеграл оценивается следующим образом:

.

В интеграле будет , поэтому

,

где не зависит от n. Аналогично и, следовательно,,

так что при достаточно больших n будет , т. е. стремится к 0 с возрастанием n, что и требовалось доказать.

Соотношение (3) обеспечивают следующие свойства функции : при больших значениях n те значения , которые отвечают сколько-нибудь заметно удаленным от x значениям t, очень малы, так что величина интеграла (2) определяется в основном значениями подынтегральной функции в непосредственной близости точки x. Но около точки x функция f (t) почти равна f (x) (т. к. она непрерывна при t=x). Значит, если n велико, то интеграл (2) мало изменяется при замене f (t) на f (x), т. е. он почти равен интегралу

и, в силу (4), почти равен f (x).

Функция , обладающая подобными свойствами, носит название ядра.

Определение. Пусть функция (n=1, 2, …), заданная в квадрате (, ), суммируема по t при каждом фиксированном x. Она называется ядром, если при условии, что .

 

Определение. Интеграл вида , где есть ядро, называется сингулярным интегралом.

В теории сингулярных интегралов очень важен вопрос установления связи предельных значений интеграла при со значением функции

f (t) в точке x. Так как изменение значения функции f (t) в одной точке никак не отражается на величине , то необходимо потребовать, чтобы значение f (x) функции f (t) в точке x было как-то связано с ее значениями в близких точках. Простейшая форма такой связи есть непрерывность функции f (t) в точке t=x. Другими формами связи могут служить аппроксимативная непрерывность, требование, чтобы x была точкой Лебега функции f (t), и т. п.

Теорема 1 (А. Лебег). Пусть на [a, b] задана последовательность измеримых функций , , , … Если существует такая постоянная K, что при всех n и t будет

,(5)

и если при всяком c () будет

,(6)

то, какова бы ни была суммируемая на [a, b] функция f (t), справедливо равенство

.(7)

Доказательство. Если есть сегмент, содержащийся в [a, b], то из (6) следует, что

.(8)

Рассмотрим непрерывную функцию f (t), и для наперед заданного разложим [a, b] точками на столь малые части, чтобы в каждой из них колебание f (t) было меньше, чем ε.

Тогда . (9)

Но , так что первая сумма из (9) не больше, чем (b-a). Вторая же сумма (9), в силу (8), стремится к нулю с возрастанием n и для окажется меньшей, чем ε. Для этих n будет

,

так что (7) доказано для непрерывной функции f(t).

Пусть f (t) измеримая ограниченная функция .

Возьмем ε>0 и, пользуясь теоремой Н. Н. Лузина, найдем такую непрерывную функцию g(t), что , .

Тогда .

Но .

Интеграл по уже доказанному стремится к нулю и для достаточно больших n становится меньше ε. Значит, для этих n будет

,

что доказывает (7) для случая ограниченной измеримой функции.

Пусть f (t) произвольная суммируемая функция.

Возьмем ε>0 и, пользуясь абсолютной непрерывностью интеграла, найдем такое δ>0, чтобы для любого измеримого множества с мерой me<δ было .

Сделав это, найдем такую измеримую ограниченную функцию g(t), чтобы было . Это возможно по

Теореме. Пусть на множестве Е задана измеримая, почти везде конечная функция f (x). Каково бы ни было ε>0, существует измеримая ограниченная функция g(x) такая, что .

Можно считать, что на множестве функция g(t) равна нулю.

Тогда .

Но .

Интеграл же при достаточно больших n будет меньше ε, и при этих n окажется , что и доказывает теорему.

Пример. Пусть . Тогда и . Следовательно выполнены оба условия теоремы Лебега. Аналогично рассматривается случай . Таким образом доказана

Теорема 2 (Риман-Лебег). Для любой суммируемой на [a, b] функции

f (t) будет .

В частности, коэффициенты Фурье , произвольной суммируемой функции стремятся к нулю при .

Если соотношение (7) имеет место для всякой суммируемой на [a, b] функции f (t), то мы будем говорить, что последовательность слабо сходится к нулю.

2. Представление функции сингулярным интегралом в заданной точке

Во всем дальнейшем будем считать, что ядро при фиксированных n и x ограничено. Тогда сингулярный интеграл имеет смысл при любой суммируемой функции f (t).

Теорема 1 (А. Лебег). Если при фиксированном x(a0 ядро слабо сходится к нулю в каждом из промежутков [a, x-δ],

[x+δ, b] и , где H(x) не зависит от n, то, какова бы ни была суммируемая функция f (t), непрерывная в точке x, справедливо равенство

.

Доказательство. Так как есть ядро, то ,

и достаточно обнаружить, что

.

С этой целью, взяв ε>0, найдем такое δ>0, что при будет

.

Это возможно в силу непрерывности функции f в точке x.

Тогда при любом n .

Но каждый из интегралов , при стремится к нулю, т. к. слабо сходится к нулю в каждом из промежутков [a, x-δ], [x+δ, b]. Поэтому для каждый из них будет по абсолютной величине меньше ε/3.

И для э

s