Сингулярные интегралы

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



Федеральное агентство по образованию

Государственное муниципальное образовательное учреждение

высшего профессионального образования

Вятский государственный гуманитарный университет

(ВятГГУ)

Математический факультет

Кафедра математического анализа и методики преподавания математики

Выпускная квалификационная работа

Сингулярные интегралы.

Выполнила:

студентка V курса

математического факультета

Сколова Ирина Юрьевна

____________________

Научный руководитель:

старший преподаватель кафедры математического анализа и МПМ

Гукасов Артур Константинович

____________________

Рецензент:

кандидат физико-математических наук, доцент

Подгорная Ирина Иссаковна

____________________

Допущена к защите в ГАК

Зав. кафедрой ___________________ Крутихина М. В.

_______________

Декан факультета ___________________ Варанкина В. И.

_______________

Киров 2005

Оглавление

Введение………………………………………………………………………...с. 3

1. Понятие сингулярного интеграла…………………………………………с. 6

2. Представление функции сингулярным интегралом в заданной точке…с. 11

3. Приложения в теории рядов Фурье.............................................................с. 18

4. Сингулярный интеграл Пуассона................................................................с. 23

Литература……………………………………………………………………...с. 27

 

 

Введение

Цель работы познакомиться с понятием сингулярного интеграла, рассмотреть представление функции сингулярным интегралом в заданной точке и приложения в теории рядов Фурье.

Основной вопрос теории сингулярных интегралов состоит в установлении связи предельных значений интеграла при со значением функции f (t) в точке x. Важным также является вопрос о представлении суммируемой функции сингулярным интегралом в точках, где эта функция служит производной своего неопределенного интеграла, или в точках Лебега. Теория сингулярных интегралов имеет многочисленные приложения. Например, вопрос о сходимости ряда Фурье разрешается с помощью сингулярного интеграла.

Во всем дальнейшем интеграл будем понимать в смысле интеграла Лебега. Напомним, что функция называется суммируемой, если существует конечный интеграл от этой функции.

В работе нам будут необходимы следующие определения и теоремы.

Определение. Если в точке x будет и , то точка x называется точкой Лебега функции f (t).

Теорема (Н. Н. Лузин). Пусть f (x) измеримая и почти везде конечная функция, заданная на [a, b]. Каково бы ни было δ>0, существует такая непрерывная функция , что .

Если, в частности, , то и .

Теорему Н. Н. Лузина можно сформулировать и так: измеримая и почти везде конечная функция становится непрерывной, если пренебречь множеством сколь угодно малой меры.

Определение. Пусть дано измеримое множество E. Взяв произвольную точку x и число h>0, положим E(, h)=E∙[-h, +h]. Это тоже измеримое множество.

Предел отношения при h→0 называется плотностью множества E в точке и обозначается через .

Определение. Пусть функция f (x) задана на сегменте [a, b] и . Если существует такое измеримое множество E, лежащее на [a, b] и имеющее точку точкой плотности, что f (x) вдоль E непрерывна в точке , то говорят, что f (x) аппроксимативно непрерывна в точке .

Определение. Измеримая функция f (x) называется функцией с суммируемым квадратом, или функцией, суммируемой с квадратом, если

.

Множество всех функций с суммируемым квадратом обозначается символом .

Определение. Пусть на сегменте [a, b] задана конечная функция f (x). Если всякому ε>0 отвечает такое δ>0, что для любой конечной системы взаимно не пересекающихся интервалов , для которой оказывается

, (3)

то говорят, что функция f (x) абсолютно непрерывна.

Не изменяя смысла определения, можно условие (3) заменить более тяжелым условием .

Определение. Две функции f (x) и g(x), заданные на сегменте [a, b], называются взаимно ортогональными, если .

Определение. Функция f (x), заданная на [a, b], называется нормальной, если .

Определение. Система функций , , , …, заданных на сегменте [a, b], называется ортонормальной системой, если каждая функция системы нормирована, а любые две функции системы взаимно ортогональны.

Определение. Пусть есть ортонормальная система и f (x) некоторая функция из . Числа называются коэффициентами Фурье функции f (x) в системе .

Ряд называется рядом Фурье функции f (x) в системе .

1. Понятие сингулярного интеграла

Чтобы познакомиться с идеей, лежащей в основе понятия сингулярного интеграла, начнем с примера.

Рассмотрим функцию

.(1)

Если n и x фиксированы, а t меняется от 0 до 1, то эта функция есть непрерывная функция от t. Значит, для всякой суммируемой f (t) () можно образовать величину

.(2)

Докажем, что во всякой точке x (0<x<1), в которой функция f(t) непрерывна, будет

.(3)

Для этого прежде всего отметим, что при

.(4)

Поэтому, чтобы установить (3), достаточно показать, что при стремится к нулю разность

.

Возьм

s