Симплекс метод в форме презентации

Курсовой проект - Математика и статистика

Другие курсовые по предмету Математика и статистика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



редставлены в виде единичных орт. Это означает, что уравнения, представляющие данную вершину должны включать каждую базисную переменную только в одной строке с коэффициентом, равным 1.

При выборе начального допустимого базиса для составления симплекс-таблицы на первом шаге исходные x1,x2 переменные приравниваются к нулю и являются небазисными, среди введённых дополнительных переменных выбираются переменные с коэффициентами равными единице. Переменные x3,x4,x5 в равенствах (2) - (4) являются базисными и в z - строку входят с коэффициентами, равными 0. Для заполнения симплекс-таблицы необходимо целевую функцию преобразовать к виду

 

.

Таким образом, окончательно получаем:

 

(1)

(2)

(3)

(4)

 

При составлении симплекс-таблицы придерживаются следующих правил:

  1. в крайнем левом столбце располагаются базисные переменные и z;
  2. в крайнем правом столбце располагаются правые части ограничений;
  3. в первой строке располагаются переменные в определённом порядке: сначала z, потом небазисные переменные, базисные переменные располагаются в последних m столбцах перед правой частью.

 

св.zx1x2x3x4x5z01-C1-C2000X3b10a11a12100X4b20a21a22010X5b30a31a32001

Идею рассмотрим на примере:

 

7x1+5x2→max

2x1+3x2≤19

2x1+x2≤13

3x2≤15

3x1≤18

x1≥0, x2≥0

Запишем задачу в каноническом виде. При необходимости предварительно неравенство преобразовать так чтобы все свободные члены были неотрицательными.

Симплекс метод в последовательном преобразовании системы уравнений до получения нужного решения. В общем случае те переменные, в системе уравнений, определитель при которых не равен 0 и является максимумом порядка, называются базисными переменными.

 

7x1+5x2→max

2x1+3x2+x3 =19

2x1+x2 +x4 =13

3x2 +x5 =15

3x1 +x6 =18

xi≥0, (i=1,…n)

 

В нашем случае базисными переменными являются x3, x4,x5,x6. Остальные переменные являются свободными (x1,x2). Придавая произвольные значения свободным переменным мы будем получать различные значения базисных. Любое решение системы ограничений задачи называется допустимым. Опорным называется решение задачи, записанное в каноническом виде в котором свободные переменные равны 0.

Теорема 1:

Оптимальное решение задачи линейного программирования находиться среди опорных решений. Идея симплекс метода состоит в том, что определенному правилу перебираются опорные решения до нахождения оптимального среди них, перебирая опорные решения, по существу, мы перебираем различные базисные переменные, то есть на очередном шаге некоторая переменная переводится из числа базисных, а вместо нее некоторая переменная из числа свободных в число базисных.

7x1+5x2→max

x3=19-2x1-3x2 (0;0;19;13;15;18)

x4 =13-2x1-x2 первоначальный опорный план

x5 =15-3x2

x6 =18-3x1 F(x1, x2 )=7*0+5*0=0

xi≥0, (i=1,…n)

 

На интуитивном уровне понятно, что естественным будет увеличение x1, так как коэффициент при нем больше чем при x2. Оставляя x2=0, мы можем увеличивать до тех пор, пока x3, x4, x5, x6 будут оставаться неотрицательными.

 

x1=min {19/2;13/2;∞;18/3}=6

 

Это означает что при x1=6, x6=0, то есть x1-переходит в число базисных, а x6-в число свободных.

 

x1=6-1/3 x6

 

Выражаем неизвестные переменные и целевую функцию через свободные переменные:

 

x3=19-2(6-1/3 x6)-3 x2=19-12+2/3 x6-3 x2=7+2/3 x6-3 x2

x4=13-2(6-1/3 x6)- x2=1+2/3 x6- x2

x5= x5=15

F(x2; x6) =42-7/3 x6+5 x2

 

При данном опорном плане (6;0;7;1;15;0) x2 переводиться из свободных в базисные переменные:

x2=min{∞;7/3;1/11;15/3}=1

 

Выражаем x2 через x4

 

x2=1+2/3 x6- x4

 

Выражаем неизвестные переменные и целевую функцию через свободные переменные:

 

x3=7+2/3 x6-3(1+2/3x6 x4)= 7+2/3 x6-3-2x6+3x4=4-4/3x6+3 x4

x5= 12-2x6+3x4-

F=42-7/3 x6+5(1+2/3x2- x4) =47-7/3x6 +10/3x6-5x4=47+x6-5x4

 

x6 положительное, следовательно можно увеличивать

 

x6=min{18;∞;3;6}=1

x4=4/3-4/9 x6- 1/3x3

F=47+x6-5(4/3-4/9-1/3x3)

 

В целевой функции все коэффициенты при переменных отрицательны, значение функции увеличивать нельзя, аналогично преобразовываем остальные переменные, находим опорный план, из которого определяем x1,x2.

Теорема 2:

  1. Пересечение замкнутых множеств, множество нетривиальных ограничений.
  2. Множество решений системы линейных нестрогих неравенств и уравнений является замкнутым.

 

αX=(αx1,x2,…, αxn)

X+Y=(x1+y1, x2+y2,… xn+yn)

 

Линейные координаты X1,X2,…Xn называется точка P=λ1x1+ λ2x2+…+ λkxk

Теорема 3:

 

Множество P={λ1x1+ λ2x2+…+ λkxk} 0≤ hi ≤1 для i= 1,…kn Ri=1, 1≤ i ≤k выпуклая линейная комбинация точек x1,x2,…xn. Если k=2, то это множество называется отрезком. X1,X2 концы отрезка. Угловой точкой замкнутого множества называется точка, которая не является нетривиальной линейной комбинацией точек множества (угловая точка).

Нетривиальность означает, что хотя бы одна из λ отлична от 0 или 1.

 

 

 

 

 

 

Теорема 4:

Любое опорное решение задачи линейного программирования является угловой точкой области допустимых решений.

Теорема 5:

Если задача линейного программирования имеет единственное решение, то оно лежит среди угловых точек ОДР. А если решение не одно, то среди решений имеется несколько угловых, таких что множество всех решений является их выпуклой линейной комбинацией.

Симплекс метод заключается в том, что сначала находится некоторое опорное решение задачи (первоначальный опорный план), а затем, целенаправленно переходя от одного опорного плана к другому, ищется оптимальный план. Если таковых несколько, то

s