Симметрия природы и законы сохранения

Если и дальше обобщать фундаментальные законы, еще глубже уходя во внутреннюю структуру: от атома к элементарным частицам, а затем и

Симметрия природы и законы сохранения

Информация

Философия

Другие материалы по предмету

Философия

Сдать работу со 100% гаранией
ергий называют полной энергией тела. Она включает кинетическую энергию, которая всегда положительна, и потенциальную, которая может быть как положительной, так и отрицательной. Таким образом, полная энергия может быть любого знака и равна нулю. Один из важнейших законов механики гласит: приращение полной энергии тела равно работе неконсервативных сил.

 

Закон сохранения полной энергии

Если неконсервативные силы отсутствуют или их работа равна нулю, то полная энергия не меняется, то есть имеет одно и то же значение в любой момент времени.

 

Закон сохранения полной энергии системы тел

Если в замкнутой системе действуют силы трения, то полная энергия системы уменьшается, что не означает ее исчезновения. Наличие трения приводит к увеличению кинетической энергии движения молекул и потенциальной энергии их взаимодействия за счет уменьшения полной энергии. Сохранение полной энергии замкнутой системы, равной сумме полной и внутренней энергий, является частным случаем всеобщего закона сохранения и превращения энергии всех форм движения материи.

Закон сохранения энергии в применении к тепловым процессам выражен в первом начале термодинамики. При этом в многоатомных молекулах кинетическая энергия складывается из трех независимых частей энергии движения молекулы как целого, вращательной энергии и колебательной энергии ядер.

Передача тепла возможна, кроме трения, теплопроводностью, конвенцией, излучением.

С законами сохранения энергии тесно связан закон пропорциональности, или взаимосвязи массы и энергии (эта связь совершенно универсальна): изменение массы тела прямо пропорционально изменению полной энергии или приращению кинетической и собственной (потенциальной) энергии.

 

Закон сохранения импульса

Данный закон представляет собой результат симметрии относительно параллельного переноса исследуемого объекта в пространстве, суть однородность пространства. Так, в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В случае системы материальных точек, их полный импульс определяется как векторная сумма всех импульсов, составляющих систему материальных точек.

Системы, на которые не действуют внешние силы, называют замкнутыми. Основная масса законов сформулирована именно для таких систем.

 

Закон сохранения момента импульса

Он являет собой пример симметрии относительно поворота в пространстве (изотропность пространства).

Этот закон есть следствие неизменности мира по отношению к его поворотам в пространстве.

Это свойство используется, в частности, в гироскопах и других навигационных системах.

Все эти законы сохранения не только фундаментальны, но и универсальны в пределах микро-, макро- и мегамиров.

 

Закон сохранения заряда

Этот закон есть следствие симметрии относительно замены описывающих систему параметров на их комплексно-сопряженные значения.

Релятивистская инвариантность заряда и закон сохранения заряда изолированной системы взаимно обусловливают друг друга и принимаются в качестве исходного положения классической электродинамики.

 

Закон сохранения четности

Этот закон подразумевает симметрию относительно инверсии (зеркального отражения).

Оба закона действуют в микро- и мегамирах для элементарных частиц.

 

Закон сохранения энтропии

Этот закон есть следствие симметрии относительно обращения времени.

В настоящее время иных фундаментальных законов сохранения четко формулировать не представляется возможным. Однако это не означает, что число их ограниченно.

ЗАКЛЮЧЕНИЕ:

 

Симметрия это категория, обозначающая процесс существования и становления тождественных объектов, в определенных условиях и в определенных отношениях между различными и противоположными состояниями явлений мира.

Это определение накладывает методологические требования: при изучении явления, события, состояния движущейся материи, прежде всего необходимо установить свойственные им различия и противоположности, затем уже раскрыть, что в нем есть тождественного и при каких условиях и в каких отношениях это тождественное возникает, существует и исчезает. Отсюда общие правила формирования гипотез: если установлено существование какого-то явления, состояния или каких-то их свойств и параметров, то необходимо предполагать и существование противоположных явлений, противоположных свойств и параметров; в свою очередь, необходимо далее постулировать, что между противоположными условиями в каких-то отношениях и условиях возникают и существуют тождественные моменты. В этих двух правилах выражается применение понятия симметрии в конкретных исследованиях.

Асимметрия категория, обозначающая существование и становление в определенных условиях и отношениях различий и противоположностей внутри единства, тождества, цельности явлений мира.

Симметрия и асимметрия дополняют друг друга, и искать их нужно одновременно.

История науки показывает, что симметрия позволяет объяснить многие явления и предсказать существование новых свойств Природы.

В естествознании преобладают определения категорий симметрии и асимметрии на основании перечисления определенных признаков. Например, симметрия определяется как совокупность

Свойства симметрии пространства и времени связывают и определяют и законы сохранения: с однородностью времени связан закон сохранения энергии; с однородностью пространства сохранения импульса, с изотропией сохранения момента импульса.

ЛИТЕРАТУРА:

 

Вейль Г. Симметрия. М.: Наука, 1975.

Горохов В. Г. Концепции современного естествознания. -М: Инфра-М, 2000.

Горелов А. А. Концепции современного естествознания. -М.: Центр, 1997.

ДруяновЛ. А. Законы природы и их назначение. М.: Просвещение, 1982.

Дубнищева Т. Я. Концепции современного естествознания. Новосибирск: ЮКЭА, 1997.

Карпенко С. X. Основные концепции естествознания. М.: Культура и спорт, 1998.

Князева Е. Н., Курдюмов С. П. Законы эволюции и самоорганизации сложных систем. М.: Наука, 1994.

КомпанеецА. С. Симметрия в микро- и макромире. М.: Наука, 1978.

Похожие работы

<< < 1 2 3