Симметрия и принципы инвариантности в физике

Статья - Математика и статистика

Другие статьи по предмету Математика и статистика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



Симметрия и принципы инвариантности в физике

В. И. Черепанов

Мы с готовностью воспринимаем лишь те физические теории, которые обладают изяществом.

А. Эйнштейн

Слово "симметрия" ("symmetria") имеет греческое происхождение и означает "соразмерность". В повседневном языке под симметрией понимают чаще всего упорядоченность, гармонию, соразмерность. Гармоничная согласованность частей и целого является главным источником эстетической ценности симметрии [1-4]. Кристаллы издавна восхищали нас своим совершенством, строгой симметричностью форм. Симметричные мозаики, фрески, архитектурные ансамбли будят в людях чувство прекрасного, музыкальные и поэтические произведения вызывают восхищение именно своей гармоничностью. Таким образом, можно говорить о принадлежности симметрии к категории прекрасного.

Научное определение симметрии принадлежит крупному немецкому математику Герману Вейлю (1885-1955), который в своей замечательной книге "Симметрия" [1] проанализировал также переход от простого чувственного восприятия симметрии к ее научному пониманию. Согласно Вейлю, под симметрией следует понимать неизменность (инвариантность) какого-либо объекта при определенного рода преобразованиях. Можно сказать,что симметрия есть совокупность инвариантных свойств объекта. Например, кристалл может совмещаться с самим собой при определенных поворотах, отражениях, смещениях. Многие животные обладают приближенной зеркальной симметрией при отражении левой половины тела в правую и наоборот. Однако подчиняться законам симметрии может не только материальный, но и, к примеру, математический объект. Можно говорить об инвариантности функции, уравнения, оператора при тех или иных преобразованиях системы координат. Это в свою очередь позволяет применять категорию симметрии к законам физики. Так симметрия входит в математику и физику, где она также служит источником красоты и изящества.

Постепенно физика открывает все новые виды симметрии законов природы: если вначале рассматривались лишь пространственно-временные (геометрические) виды симметрии, то в дальнейшем были открыты ее негеометрические виды (перестановочная, калибровочная, унитарная и др.). Последние относятся к законам взаимодействий, и их объединяют общим названием "динамическая симметрия".

Принципы инвариантности играют очень важную роль в современной физике: с их помощью обоснованы старые и предсказаны новые законы сохранения, облегчено решение многих фундаментальных и прикладных задач и, что особенно важно, удалось добиться первых успехов на пути объединения фундаментальных взаимодействий. Эти принципы обладают большой общностью. Выдающийся американский физик-теоретик Ю. Вигнер [5] отметил, что эти принципы относятся к законам природы так же, как законы природы относятся к явлениям, т.е. симметрия "управляет" законами, а законы "управляют" явлениями. Если бы не было, например, инвариантности законов природы относительно смещений в пространстве и времени, то вряд ли наука вообще смогла бы устанавливать эти законы.

Читателям, интересующимся общенаучным и философским значением симметрии, можно порекомендовать уже упоминавшуюся книгу Г. Вейля [1] , а также ряд статей и лекций Ю. Вигнера, собранных в его книге "Этюды о симметрии" [5]. На широкий круг читателей рассчитана брошюра А. Компанейца [6]. Для более подготовленных читателей рекомендуем учебную [7-9] и монографическую [10-12] литературу.

Целью настоящей статьи является краткое популярное изложение основных понятий теории симметрии и принципов инвариантности в современной физике.

1. Пространственно-временные виды симметрии

 

Рисунок. Оси симметрии куба

Наиболее наглядным видом симметрии является пространственная (геометрическая) симметрия, которая имеет ряд разновидностей: вращательная, зеркальная, трансляционная и др. Например, шар (или сфера) обладает полной вращательной симметрией, т.е. вращение шара вокруг любой оси, проходящей через его центр, на любой угол  не меняет положения шара в пространстве; конус имеет полную одноосную симметрию; куб - три оси симметрии 4-го порядка (с поворотами на углы, кратные 2 /4 ), шесть осей симметрии 2-го порядка ( ) и четыре оси симметрии 3-го порядка (  ) (см. рис.). Шар, конус и куб имеют еще плоскости симметрии (первые два - бесконечное число, а куб - девять плоскостей симметрии).

Особым видом симметрии является инверсионная симметрия, при которой каждая точка объекта с радиус-вектором r преобразуется в точку с радиус-вектором -r (при этом радиус-вектор исходит из центра инверсии).

Заметим, что вместо преобразований самого объекта можно производить соответствующие преобразования системы координат: если после преобразования объект в новой системе координат занимает то же положение, что и в старой, то такое преобразование координат есть преобразование симметрии объекта. Такое определение операций симметрии удобнее, когда мы имеем дело с математическими объектами. Если математический объект (функция, оператор, уравнение) остается инвариантным при определенном преобразовании координат, то это преобразование считается преобразованием (операцией) симметрии этого объекта. Например, функции f = f(x2+y2+z2) и (x2+y2) обладают в трехмерном пространстве: первая - сферической, а вторая - аксиальной симметрией.

Совокупность операций симметрии любого объекта образует группу симметрии этого объекта, основное свойство элементов

s