Симметрия в неживой природе

Информация - Геодезия и Геология

Другие материалы по предмету Геодезия и Геология

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



ли, совпадают в экваториальной плоскостью только 2 раза в год, совершая в течение года колебания относительно нее с амплитудой в 47.

С наклоном земной оси к плоскости эклиптики связана антисимметрия распределения времен года на Земле. Благодаря упоряченному обращению Земли вокруг Солнца распределение климатических зон оказывается симметричным относительно экваториальной плоскости.

Исходя из вышесказанного, остановимся прежде всего на обобщенной симметрии внешней формы нашей планеты. К числу формообразующих факторов земного тепа следует отнести силу земного тяготения, воздействие космического гравитационного поля, одиннадцать различных видов движений Земли, деформации земной коры, связанные с перетеканием подкорового вещества и др.

Из перечисленных два фактора сыграли и продолжают играть доминирующую роль в деле формирования земного геоида это сила земного тяготения и центробежная, обусловленная вращением Земли вокруг своей оси. Под влиянием первой силы Земля стремится принять шаровую форму. Вторая сила придает ей форму несколько сплющенного вдоль оси вращения одноосного эллипсоида (сфероида).

Суммарное воздействие силы земного тяготения можно идеализированно изобразить в виде пучка бесчисленного множества одинаковых стрелок (векторов), направленных к одной общей точке центру Земли. Симметрия такого пучка, так же как и симметрия идеального и неподвижного шара отвечает бесчисленному множеству осей симметрии бесконечного порядка (осей вращения) и бесчисленному множеству плоскостей симметрии, пересекающихся в одной точке центре шара.

Проявляется ли реально указанная симметрия на земном шаре и если проявляется, то в чем?

Прежде всего мы видим ее проявление в общей форме Земли, весьма близкой к шару. Кроме того, влияние этой симметрии ярко сказывается на внешней форме всех объектов, находящихся на поверхности Земли и испытывающих воздействие земного тяготения (внутри твердых тел электромагнитные силы несоизмеримо больше гравитационных).

Классифицируя эти явления, мы опять находим в них проявление общего закона Кюри, повсеместно проявляющегося в природе:

все то, что растет или движется по вертикали, т. е. вверх или вниз относительно земной поверхности, имеет симметрию типа Ln nP пт и л и соответствующих подгрупп Ln n, Pm 1.

Все то, что растет и движется горизонтально или косо по отношению к земной поверхности, характеризуется симметрией Р n или т1.

В чем же кроется объяснение столь широкого распространения двух типов симметрии.

Все вокруг нас находится в поле земного тяготения и, следовательно, должно неминуемо нести на себе отпечаток его воздействия. Примем какую-либо точку земной поверхности за исходную и изобразим действие на нее земного тяготения в виде вертикальной стрелки, направленной острием вниз.

Вокруг исходной точки находится бесчисленное множество Других точек земной поверхности, на которые такие действует сила земного тяготения. Следовательно, изображенную стрелку следует окружить бесконечным множеством аналогичных стрелок, направленных к центру земного шара и образующих в совокупность конус. Ясно, что симметрия стрелки над исходной точкой с учетом всех окружающих стрелок отвечает симметрии конуса L P. Такая симметрия строго согласована с шаровой симметрией Земли: ось симметрии бесконечного порядка L конуса совпадает с одним на диаметров шара, также являющимся осью симметрии бесконечного порядка, а бесчисленные плоскости симметрии конуса совмещаются с бесчисленными плоскостями симметрии шара, пересекающимися в одной из точек на его поверхности.

Итак, любая точка земной поверхности под влиянием силы земного тяготения получает симметрию конуса, которая и налагает свой отпечаток на симметрию каждого тела, находящегося в данной точке.

Так объясняется универсальный закон симметрии, царящий на земной поверхности и обусловленный шаровой симметрией сил земного тяготения. Отметим, что этому всеобщему закону подчиняется не только органический мир, но и каменный природный материал, а именно кристаллы, главная ось которых ориентирована во время роста вертикально или косо относительно горизонтальной плоскости.

Перейдем к рассмотрению воздействия силы вращения Земли вокруг своей оси на симметрию формы и поверхности нашей планеты. Как известно, эта сила придает ей форму эллипсоида вращения.

Симметрия неподвижного конуса, где ось бесконечного порядка (ось вращения) совпадает с осью конуса, плоскости симметрии направлены вдоль этой оси. Как показал А.Е Шубников, вращение конуса вокруг его оси аннулирует все плоскости симметрии. Следовательно, симметрия вращающегося конуса, аналогичным образом вращение земного сфероида, приводит к тому, что все плоскости симметрии, совпадающие с плоскостями меридианов, должны исчезнуть; остается лишь одна плоскость симметрии, перпендикулярная оси вращения и совпадающая экваториальной плоскостью. В результате получаем симметрию, которая отвечает одновременно вращающемуся одноосному эллипсоиду и вращающемуся вокруг одного из своих диаметров шару.

Этой симметрии подчиняются, помимо общей формы геоида, климатическая и почвенная зональности земного шара. Большую роль в деле возникновения именно такой симметрии играет воздействие подвижных оболочек (гидросферы и атмосферы) на литосферу в условиях вращения Земли.

Отсутствие меридиональных плоскостей симметрии наглядно

s