Сжатие речевого сигнала на основе линейного предсказания

Информация - Радиоэлектроника

Другие материалы по предмету Радиоэлектроника

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



шумом квантования, эквивалентно . Следовательно, можно использовать для оценки АКФ B(i) в приемнике, и результирующие оценки могут быть использованы в СЛАУ вместо B(i) при нахождении коэффициентов предсказателя. При достаточно большом числе уровней квантования разность между и очень мала. Следовательно, оценка B(i), полученная через , может быть использована для определения коэффициентов предсказателя. Выполненный таким образом адаптивный предсказатель приводит к низкой скорости кодирования данных источника.

Вместо использования блоковой обработки для нахождения коэффициентов предсказателя {}, как описано выше, мы можем адаптировать коэффициенты предсказателя поотсчетно, используя алгоритм градиентного типа, который мы и рассмотрим.

Основное преимущество такого метода адаптации это отказ от решения СЛАУ, что значительно уменьшает вычислительные затраты.

Запишем оценку среднего квадрата ошибки предсказания:

Изобразим два графика, объясняющих функциональную зависимость в одномерном случае () и в двумерном случае ():

Очевидно, что в общем случае, т.е. при фигура, полученная при двух коэффициентах предсказания, превратится в многомерный параболоид. Цель градиентного метода состоит в том, чтобы найти такой вектор аорt, при котором функция s2 будет иметь наименьшее значение, т.е. после определенных итераций необходимо достичь вершины этого параболоида. Алгоритм такого градиентного метода выглядит так:

,

где i номер шага, μ шаг алгоритма.

При малом шаге алгоритма мы практически полностью устраняем возможность расхождения алгоритма, но при этом проигрываем в скорости сходимости или в скорости нахождения коэффициентов предсказателя. И наоборот.

Следует сказать, что такой алгоритм сходится при очень большом количестве итераций, в общем случае, при количестве итераций стремящемся к бесконечности. Поэтому необходимо также перед началом вычислений задаться допустимой погрешностью, которая нас может устроить.

Найдем частную производную:

Тогда алгоритм адаптации коэффициентов линейного предсказания примет следующий вид:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Иллюстрации

 

Ниже приводятся иллюстрации одного из опытов, проделанного в лабораторной работе.

Обрабатываемый сегмент речевого сигнала:

Ошибка предсказания:

Коэффициенты отражения и Импульсная характеристика формирующего фильтра:

 

 

 

 

 

 

 

 

Передаточные функции ФФ и ФСО и Диаграмма полюсов:

Полученный (синтезированный) сегмент РС:

 

 

 

 

 

 

 

 

 

 

 

 

Ошибка предсказания:

 

В проделанной работе проводились исследования влияния разрядности коэффициентов предсказания / отражения и сигнала ошибки на синтезированный сигнал в системе с АДИКМ, полученный по этим величинам на приемной стороне декодером. Как уже ясно из названия коэффициентов, исследовались и сравнивались два типа фильтров: стандартный и решетчатый.

В результате можно сделать следующие выводы.

Решетчатый фильтр всегда устойчив и коэффициенты отражения всегда меньше 1, потому что коэффициенты отражения являются также и коэффициентами корреляции. Устойчивость решетчатого фильтра инвариантна к разрядности коэффициентов отражения. Разрядность коэффициентов отражения сказывается лишь на форме передаточной функции и, как следствие, на диаграмме полюсов и импульсной характеристике, а на форму синтезированного РС влияет очень незначительно, при условии постоянной, довольно высокой (12) разрядности сигнала ошибки.

В случае фиксированной, довольно низкой, разрядности коэффициентов отражения (4) и уменьшающейся разрядности сигнала ошибки до значения (6), ухудшение синтезированного РС незначительно. При числе разрядов меньше (6) уже начинают наблюдаться значительные искажения. Если сравнить эти опыты с опытами, проделанными над стандартным фильтром, то для того же сегмента и при значении разрядности (8), наблюдалась неустойчивость синтезированного фильтра и, как следствие, полное искажение РС.

В случае, если два фильтра были устойчивы и разрядность их коэффициентов, а также разрядность сигнала ошибки была одинаковой, то синтезированный сигнал оказывался идентичным.

Следует также отметить не только влияние разрядности коэффициентов предсказания / отражения на синтезированный сигнал, но и, прежде всего, саму реализацию исходного аналогового РС, как основы, по которой рассчитываются сами коэффициенты. Поэтому необходимо иметь запас по разрядности коэффициентов предсказания, чтобы стандартный фильтр для некоторых реализаций не оказался неустойчив (решетчатый фильтр устойчив в любом случае). Экспериментально был подобран вариант выбора разрядности коэффициентов предсказания (12), а сигнала ошибки (8) (разрядность коэффициентов отражения не играет почти никакой роли). Это достаточно хорошо различимая речь.

 

 

 

 

Заключение

 

В данной работе достаточно подробно изложен метод цифрового сжатия речевого сигнала на основе линейного предсказания. Показано, что существуют несколько подходов к ре

s