Сжатие данных методами Хафмана и Шеннона-Фано

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



жатия без потерь и называются кодированием с минимальной избыточностью (minimum redundancy coding) и сжатием с применением словаря (dictionary compression).

Кодирование с минимальной избыточностью - это метод кодирования байтов (или, более строго, символов), при котором чаще встречающиеся байты кодируются меньшим количеством битов, чем те, которые встречаются реже. Например, в тексте на английском языке буквы Е, Т и А встречаются чаще, нежели буквы Q, X и Z. Поэтому, если бы удалось закодировать буквы Е, Т и А меньшим количеством битов, чем 8 (как должно быть в соответствии со стандартом ASCII), а буквы Q, X и Z - большим, текст на английском языке удалось бы сохранить с использованием меньшего количества битов, чем при соблюдении стандарта ASCII.

При использовании сжатия с применением словаря данные разбиваются на большие фрагменты (называемые лексемами), чем символы. Затем применяется алгоритм кодирования лексем определенным минимальным количеством битов. Например, слова "the", "and" и "to" будут встречаться чаще, чем такие слова, как "electric", "ambiguous" и "irresistible", поэтому их нужно закодировать меньшим количеством битов, чем требовалось бы при кодировании в соответствии со стандартом ASCII.

 

2. Сжатие с минимальной избыточностью

 

Теперь, когда в нашем распоряжении имеется класс потока битов, им можно воспользоваться при рассмотрении алгоритмов сжатия и восстановления данных. Мы начнем с исследования алгоритмов кодирования с минимальной избыточностью, а затем рассмотрим более сложное сжатие с применением словаря.

Мы приведем подробное описание трех алгоритмов кодирования с минимальной избыточностью: кодирование Шеннона-Фано (Shannon-Fano), кодирование Хаффмана (Haffman) и сжатие с применением скошенного дерева (splay tree compression), однако рассмотрим реализации только последних двух алгоритмов (алгоритм кодирования Хаффмана ни в чем не уступает, а кое в чем даже превосходит алгоритм кодирования Шеннона Фано). При использовании каждого из этих алгоритмов входные данные анализируются как поток байтов, и различным значениям байтов тем или иным способом присваиваются различные последовательности битов.

 

2.1.Кодирование Шеннона-Фано

 

Первый алгоритм сжатия, который мы рассмотрим - кодирование Шеннона-Фано, названное так по имени двух исследователей, которые одновременно и независимо друг от друга разработали этот алгоритм: Клода Шеннона (Claude Shannon) и Р. М. Фано (R. М. Fano). Алгоритм анализирует входные данные и на их основе строит бинарное дерево минимального кодирования. Используя это дерево, затем можно выполнить повторное считывание входных данных и закодировать их.

Чтобы проиллюстрировать работу алгоритма, выполним сжатие предложения "How much wood could a woodchuck chuck?" ("Сколько дров мог бы заготовить дровосек?") Прежде всего, предложение необходимо проанализировать. Просмотрим данные и вычислим, сколько раз в предложении встречается каждый символ. Занесем результаты в таблицу (см. таблицу 1.1).

 

Теперь разделим таблицу на две части, чтобы общее число появлений символов в верхней половине таблицы приблизительно равнялось общему числу появлений в нижней половине. Предложение содержит 38 символов, следовательно, верхняя половина таблицы должна отражать приблизительно 19 появлений символов. Это просто: достаточно поместить разделительную линию между строкой o и строкой u. В результате этого верхняя половина таблицы будет отражать появление 18 символов, а нижняя - 20. Таким образом, мы получаем таблицу 1.2.

 

Теперь проделаем то же с каждой из частей таблицы: вставим линию между строками так, чтобы разделить каждую из частей. Продолжим этот процесс, пока все буквы не окажутся разделенными одна от другой. Результирующее дерево Шеннона-Фано представлено в таблице 1.3.

 

 

Я намеренно изобразил разделительные линии различными по длине, чтобы разделительная линия 1 была самой длинной, разделительная линия 2 немного короче и так далее, вплоть до самой короткой разделительной линии 6. Этот подход обусловлен тем, что разделительные линии образуют повернутое на 90 бинарное дерево (чтобы убедиться в этом, поверните таблицу на 90 против часовой стрелки). Разделительная линия 1 является корневым узлом дерева, разделительные линии 2 - двумя его дочерними узлами и т.д. Символы образуют листья дерева. Результирующее дерево в обычной ориентации показано на рис.1.1

 

 

Все это очень хорошо, но как оно помогает решить задачу кодирования каждого символа и выполнения сжатия? Что ж, чтобы добраться до символа пробела, мы начинаем с коневого узла, перемещаемся влево, а затем снова влево. Чтобы добраться до символа c, мы смещаемся влево из корневого узла, затем вправо, а затем влево. Для перемещения к символу o потребуется сместиться влево, а затем два раза вправо. Если принять, что перемещение влево эквивалентно нулевому биту, а вправо - единичному, можно создать таблицу кодирования, приведенную в таблице 11.4.

 

 

Cодержит всего 131 бит. Если мы предполагаем, что исходная фраза закодирована кодом ASCII, т.е. один байт на символ, то оригинальная фраза заняла бы 256 байт, т.е. мы получаем коэффициент сжатия 54%.

Для декодирования сжатого потока битов мы строим то же дерево, которое было построено на этапе сжатия. Мы начинаем с корневого узла и выбираем из сжатого потока битов по одному биту. Если бит является нулевым, мы перемещаемся влево, если единичным - вправо. Мы продолжаем этот процесс

s