Сжатие данных методами Хафмана и Шеннона-Фано

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



Введение

 

Думая о данных, обычно мы представляем себе ни что иное, как передаваемую этими данными информацию: список клиентов, мелодию на аудио компакт-диске, письмо и тому подобное. Как правило, мы не слишком задумываемся о физическом представлении данных. Заботу об этом - отображении списка клиентов, воспроизведении компакт-диска, печати письма - берет на себя программа, манипулирующая данными.

 

1. Представление данных

 

Рассмотрим двойственность природы данных: с одной стороны, содержимое информации, а с другой - ее физическое представление. В 1950 году Клод Шеннон (Claude Shannon) заложил основы теории информации, в том числе идею о том, что данные могут быть представлены определенным минимальным количеством битов. Эта величина получила название энтропии данных (термин был заимствован из термодинамики). Шеннон установил также, что обычно количество бит в физическом представлении данных превышает значение, определяемое их энтропией.

В качестве простого примера рассмотрим исследование понятия вероятности с помощью монеты. Можно было бы подбросить монету множество раз, построить большую таблицу результатов, а затем выполнить определенный статистический анализ этого большого набора данных с целью формулирования или доказательства какой-то теоремы. Для построения набора данных, результаты подбрасывания монеты можно было бы записывать несколькими различными способами: можно было бы записывать слова "орел" или "решка"; можно было бы записывать буквы "О" или "Р"; или же можно было бы записывать единственный бит (например "да" или "нет", в зависимости от того, на какую сторону падает монета). Согласно теории информации, результат каждого подбрасывания монеты можно закодировать единственным битом, поэтому последний приведенный вариант был бы наиболее эффективным с точки зрения объема памяти, необходимого для кодирования результатов. С этой точки зрения первый вариант является наиболее расточительным, поскольку для записи результата единственного подбрасывания монеты требовалось бы четыре или пять символов.

Однако посмотрим на это под другим углом: во всех приведенных примерах записи данных мы сохраняем одни и те же результаты - одну и ту же информацию - используя все меньший и меньший объем памяти. Другими словами, мы выполняем сжатие данных.

1.1.Сжатие данных

 

Сжатие данных (data compression) - это алгоритм эффективного кодирования информации, при котором она занимает меньший объем памяти, нежели ранее. Мы избавляемся от избыточности (redundancy), т.е. удаляем из физического представления данных те биты, которые в действительности не требуются, оставляя только то количество битов, которое необходимо для представления информации в соответствии со значением энтропии. Существует показатель эффективности сжатия данных: коэффициент сжатия (compression ratio). Он вычисляется путем вычитания из единицы частного от деления размера сжатых данных на размер исходных данных и обычно выражается в процентах. Например, если размер сжатых данных равен 1000 бит, а несжатых - 4000 бит, коэффициент сжатия составит 75%, т.е. мы избавились от трех четвертей исходного количества битов.

Конечно, сжатые данные могут быть записаны в форме недоступной для непосредственного считывания и понимания человеком. Люди нуждаются в определенной избыточности представления данных, способствующей их эффективному распознаванию и пониманию. Применительно к эксперименту с подбрасыванием монеты последовательности символов "О" и "Р" обладают большей наглядностью, чем 8-битовые значения байтов. (Возможно, что для большей наглядности пришлось бы разбить последовательности символов "О" и "Р" на группы, скажем, по 10 символов в каждой.) Иначе говоря, возможность выполнения сжатия данных бесполезна, если отсутствует возможность их последующего восстановления. Эту обратную операцию называют декодированием (decoding).

 

1.2 Типы сжатия

 

Существует два основных типа сжатия данных: с потерями (lossy) и без потерь (lossless). Сжатие без потерь проще для понимания. Это метод сжатия данных, когда при восстановлении данных возвращается точная копия исходных данных. Такой тип сжатия используется программой PKZIB1: распаковка упакованного файла приводит к созданию файла, который имеет в точности то же содержимое, что и оригинал перед его сжатием. И напротив, сжатие с потерями не позволяет при восстановлении получить те же исходные данные. Это кажется недостатком, но для определенных типов данных, таких как данные изображений и звука, различие между восстановленными и исходными данными не имеет особого значения: наши зрение и слух не в состоянии уловить образовавшиеся различия. В общем случае алгоритмы сжатия с потерями обеспечивают более эффективное сжатие, чем алгоритмы сжатия без потерь (в противном случае их не стоило бы использовать вообще). Для примера можно сравнить предназначенный для хранения изображений формат с потерями JPEG с форматом без потерь GIF. Множество форматов потокового аудио и видео, используемых в Internet для загрузки мультимедиа-материалов, являются алгоритмами сжатия с потерями.

В случае экспериментов с подбрасыванием монеты было очень легко определить наилучший способ хранения набора данных. Но для других данных эта задача становится более сложной. При этом можно применить несколько алгоритмических подходов. Два класса сжатия, которые будут рассмотрены в этой главе, представляют собой алгоритмы с

s