Сетевые методы в планировании

Курсовой проект - Математика и статистика

Другие курсовые по предмету Математика и статистика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



жности начала операции (3, 4) требуется завершение операций (1,3) и (2, 3). Протекание операций во времени задается порядком нумерации событий, причем номер начального события всегда меньше номера конечного. Такой способ нумерации особенно удобен выполнении вычислений на ЭВМ.

 

Правила построения сетевой модели

 

Правило 1. Каждая операция в сети представляется одной и только одной дугой (стрелкой). Ни одна из операций не должна появляться в модели дважды. При этом следует различать случай, когда какая-либо операция разбивается на части; тогда каждая часть изображается отдельной дугой. Так, например, прокладку трубопровода можно расчленить на прокладку отдельных секций и рассматривать прокладку каждой секции как самостоятельную операцию.

Правило 2. Ни одна пара операций не должна определяться одинаковыми начальным и конечным событиями. Возможность неоднозначного определения операций через события появляется в случае, когда две или большее число операций допустимо выполнять одновременно. Пример этого случая приведен на рис. 3.2 а, где операции А и В имеют одинаковые начальное и конечное события. Чтобы исключить такую ошибку между А и

 

 

(a) (б)

 

рис 3.2

конечным (начальным) событием или между В и конечным (начальным) событием, вводится фиктивная операция D . Рис. 3.2 б иллюстрирует различные варианты введения такой фиктивной операции D. В результате операции А и В определяются теперь однозначно парой событий, отличающихся либо номером начального, либо номером конечного события. Следует обратить внимание на то, что фиктивные операции не требуют затрат ни времени, ни ресурсов.

Фиктивные операции позволяют также правильно отображать логические связи, которые без их помощи нельзя задать на сети. Предположим, что в некоторой программе операции А и В должны непосредственно предшествовать С, а операции Е непосредственно предшествует только В. На рис 12.3 а эти условия отражены неверно, так как, хотя упорядочения между А. В и С показаны правильно, из этого фрагмента следует, что операции Е должны непосредственно предшествовать обе операции А и В. Правильное представление указанных условий дает фрагмент, изображенный на рис 12.3 б в котором используется

 

 

 

 

 

 

 

 

(а) (б)

 

Рис 3.3

 

фиктивная операция D. Поскольку на операцию D не затрачиваются ни время, ни ресурсы заданные отношения упорядочения выполняются.

Правило 3. При включении каждой операции в сетевую модель для обеспечения правильного упорядочения необходимо дать ответы на следующие вопросы:

а) Какие операции необходимо завершить непосредственно перед началом рассматриваемой операции?

б) Какие операции должны непосредственно следовать после завершения данной операции?

в) Какие операции могут выполняться одновременно с рассматриваемой?

Это правило не требует пояснений. Оно позволяет проверять (и перепроверять) отношения упорядочения в процессе построения сети.

 

Расчет сетевой модели

 

Применение методов СПУ в конечном счете должно обеспечить получение календарного плана, определяющего сроки начала и окончания каждой операции. Построение сети является лишь первым шагом на пути к достижению этой цели. Вследствие наличия взаимосвязей между различными операциями для определения сроков их начала и окончания необходимо проведение специальных расчетов. Эти расчеты можно выполнять непосредственно на сети, пользуясь простыми правилами. В результате вычислений определяются критические и некритические операции программы. Операция считается критической, если задержка ее начала приводит к увеличению срока окончания всей программы. Некритическая операция отличается тем, что промежуток времени между ее ранним началом и поздним окончанием (в рамках рассматриваемой программы) больше ее фактической продолжительности.

Определение критического пути

 

Критический путь определяет непрерывную последовательность критических операций, связывающих исходное и завершающее события сети. Другими словами, критический путь задает все критические операции программы. Расчет критического пути включает два этапа. Первый этап называется прямым проходом. Вычисления начинаются с исходного события и продолжаются до тех пор, пока не будет достигнуто завершающее событие всей сети. Для каждого события вычисляется одно число, представляющее ранний срок его наступления. На втором этапе, называемом обратным проходом, вычисления начинаются с завершающего события сети и продолжаются, пока не будет достигнуто исходное событие. Для каждого события вычисляется число, представляющее поздний срок его наступления. Обратный проход начинается с завершающего события сети. При этом целью является определение поздних сроков окончания всех операций, входящих в событие.

Теперь, используя результаты вычислений при прямом и обратном проходах, можно определить операции критического пути. Операция (i, j) принадлежит критическому пути, если она удовлетворяет следующим трем условиям:

E(i) - ранние сроки начала всех операций, выходящих из события i.

L(i) - поздние сроки окончания всех операций, входящих в событие i.

Dij - продолжительн

s