Сетевые источники питания

Отчет по практике - Компьютеры, программирование

Другие отчеты по практике по предмету Компьютеры, программирование

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



Обычно для питания устройств потребляющих небольшой ток или сильноточных схем, в которых уровень пульсаций большого значения не имеет. Следует заметить, что при питании номинальной нагрузки, выходное постоянное напряжение будет ниже входного переменного.

В данном типе выпрямителей зарядка конденсатора происходит тогда, когда диод открывается, то есть на положительных полуволнах переменного напряжения. На отрицательных полуволнах конденсатор разряжается только через нагрузку, потому что диод на отрицательных полуволнах закрыт. Вот и получается, что на холостом ходу, когда нет нагрузки, то есть, разрядной цепи, напряжение на конденсаторе может достигнуть амплитудного значения переменного напряжения (то есть, быть даже больше действующего переменного напряжения). С подключением нагрузки это напряжение будет снижаться. И степень этого снижения будет зависеть от тока протекающего через нагрузку, то есть, разрядного тока, а так же, и от емкости конденсатора и множества других факторов (сопротивления вторичной обмотки трансформатора или внутреннего сопротивления источника переменного напряжения, прямого и обратного сопротивления диода, тока утечки конденсатора и т.д.).

Этот недостаток, свойственный практически всем выпрямителям. Недостаток устраняется, обычно, установкой конденсатора большей емкости или при помощи стабилизаторов.

На основе однополупериодного выпрямителя несложно сделать двуполярный источник питания (рис. 5.2.2), например, для питания схемы на операционном усилителе. Здесь два выпрямителя, диод одного пропускает только положительные полуволны, диод второго только отрицательные.

 

Рис 5.2.2. Однополупериодный выпрямитель

 

В результате, на конденсаторе получаются равные по модулю, но противоположные по знаку напряжения.

Точно такую же схему имеет и выпрямитель с удвоением напряжения (рис. 5.2.3.). Только нулевая точка не подключена. Выпрямитель с удвоением выгоден, если нужно получить напряжение побольше, чем может обеспечить имеющийся трансформатор. Фактически, он выдает напряжение в 2 раза превышающее напряжение выпрямителя напряжения, показанного на рис. 5.2.1.

 

Рис. 5.2.3. Выпрямитель с удвоением

 

Двухполупериодная схема (рис. 5.2.4.) характеризуется повышенной частотой пульсаций, потому что на диоды подаются напряжения с разных противоположных концов обмотки. Поэтому частота пульсация удваивается (получается не 50Гц, а 100Гц). Это выгодно в том смысле, что для получения такого же сглаживания пульсаций как в однополупериодном выпрямителе требуется меньшая емкость конденсатора.

Вообще, это нужно учитывать в дальнейшем, потому что, чем выше частота выпрямленного переменного тока, тем меньше может быть емкость сглаживающего конденсатора.

 

Рис. 5.2.4. Двухполупериодная схема выпрямителя

 

Недостаток двухполупериодной схемы в том, что необходим трансформатор, у которого есть отвод от середины вторичной обмотки, и число витков (суммарное) вторичной обмотки получается в два раза больше.

Мостовая схема (рис. 5.2.5.) самая популярная схема выпрямителя, она отличается тем, что обеспечивает удвоенную частоту пульсация при работе от обмотки без отводов, имеющей число витков такое же, как в схеме однополупериодного выпрямителя. То есть те же преимущества, что и в двухполупериодной схеме, но для этого удваивать число витков вторичной обмотки трансформатора и делать от нее отводы не нужно.

Теперь рассчитаем выпрямитель (рис. 5.2.5). Допустимый прямой средний ток диодов в мостовой схеме должен быть не менее 0,5Iвых, практически выбирают (для надежности) диоды с большим прямым током.

 

Рис. 5.2.5. Выпрямитель, выполненный по мостовой схеме

 

Допустимое обратное напряжение не должно быть меньше 0,71UII, + 0,5Uвых, но поскольку на холостом ходу Uвых достигает 1,41UII, обратное напряжение диодов целесообразно выбирать не меньше этой величины, т. е. амплитудного значения напряжения на вторичной обмотке. Полезно учесть еще и возможные колебания напряжения сети.

Амплитуду пульсаций выпрямленного напряжения в вольтах можно оценить по упрощенной формуле: Uпульс = 5 Iвых/С- выходной ток подставляется в амперах, емкость конденсатора С1 в микрофарадах.[5,7]

 

5.3 Расчет стабилизатора

 

Среди полупроводниковых стабилизаторов напряжения существует две основные группы - параметрические стабилизаторы и компенсационные.

Наиболее просты параметрические стабилизаторы. Их принцип действия основан на использовании особых диодов - стабилитронов, или других каких-то полупроводниковых элементов, которые имеют такую вольт-амперную характеристику (ВАХ), что при пропускании через них тока или прикладыванию к ним напряжения на этих элементах поддерживается определенное стабильное напряжение падения. Поэтому такие стабилизаторы и называются параметрическими, - потому что их работа зависит от определенного параметра стабилитрона или другого элемента.

Яркий пример - стабилитрон. Это диод, имеющий ВАХ показанную на рис. 5.3.1. Как видно, в отличие от обычного диода ВАХ стабилитрона имеет отрицательную ветвь, характеризующую резкое нарастание обратного тока при достижении обратным напряжением

Фактически, это обратимый пробой диода, не взывающий повреждения кристалла (но только в том случае, если не будет превышен максимально допустимый обратный ток).

 

Рис. 5.3.1. ВАХ стабилитрона определенного значения (напряжения стабилиза

s