Сетевая телефония

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



ных от одной локальной сети к другой он должен быть обслужен двумя устройствами (в данном случае двумя мостами или двумя маршрутизаторами), поэтому такая схема может быть описана в рамках одноканальной многофазной модели. (Описание потока данных от одной локальной сети к другой в рамках одноканальной многофазной модели является математически корректным, однако так ли уж необходимо работать именно в рамках такой модели? Ответить на этот вопрос помогает анализ потока данных от одной сети к другой.)

Наиболее узкое место информационного потока между двумя удаленными друг от друга локальными сетями - канал связи глобальной сети, пропускная способность которого обычно существенно меньше скорости работы локальной сети.

Представим себе, что рабочая станция сети передает кадр данных в сеть Ethernet. Передаваемый кадр вначале "путешествует" из сегмента сети к мосту или маршрутизатору с той скоростью, на которой работает сеть (4 или 16 Мбит/с). Попав в маршрутизатор или мост, кадр копируется из сети в буфер устройства, преобразуется в другой формат, а затем (при наличии свободного канала) передается через глобальную сеть со скоростью, гораздо меньшей, чем та, с которой кадр передавался из локальной сети на устройство маршрутизации. Если непосредственно перед текущим кадром на сетевое устройство попал другой кадр, то нашему кадру придется подождать (в буфере), до тех пор пока предыдущий кадр не будет обслужен. Время обслуживания текущего кадра зависит от того, сколько кадров пришло на сетевое устройство непосредственно перед текущим: чем больше таких кадров, тем дольше время ожидания.

Рассмотрим теперь, как выполняется обслуживание кадра на противоположном конце канала глобальной сети. Поступая из глобальной сети на мост/маршрутизатор, кадр преобразуется к формату локальной сети и передается в локальную сеть. Поскольку скорость передачи информации по глобальной сети всегда ниже скоростей передачи кадров в локальной, никаких очередей при таком обслуживании не возникает, стало быть основной вклад во время обслуживания кадра на втором мосте/маршрутизаторе вносит само устройство. И это лишь малая доля от времени задержки кадров на первом мосте/маршрутизаторе. Отсюда следует, что для описания двухточечных линий связи между локальными сетями можно спокойно использовать одноканальную однофазную модель.

2. Применение тории массового обслуживания.

Используя математический аппарат теории массового обслуживания, можно вычислить зависимость времени передачи кадров от скорости работы глобальной сети без подключения к реальным каналам. Такие вычисления позволяют ответить на множество вопросов относительно производительности сети; благодаря им становится понятным, каково среднее время задержки кадров на мосте/маршрутизаторе, как может повлиять на величину этих задержек рост скорости работы канала связи глобальной сети и при каких условиях рост скорости обмена информацией по каналам глобальной сети не приводит к существенному увеличению производительности моста/маршрутизатора.

Пример расчета:

Число станций 500.

Число транзакций (кадров) от одной станции - 700

Режим работы круглосуточный (24 часа). В час наибольшей нагрузки передается 20% от всего числа передаваемых кадров.

Размер кадра 80 байт.

Итого в час через HUB проходит:

  1. При Гауссовском распределении N = 700 * 500 * 0.2 = 70000 кадров.
  2. При нормальном распределении N = 700 * 500 / 24 = 14583,3 кадра.

Скорость поступления кадров получается делением полученных чисел на 3600:

  1. При Гауссовском распределении 70000 / 3600 = 19,44 кадров в секунду.
  2. При нормальном распределении 14583,3 / 3600 = 4,05 кадров в секунду.

Для подсчета скорости обслуживания следует задаться определенным значением скорости работы глобальной сети. При этом совершенно неважно, насколько близка к оптимальной взятая в качестве начального приближения скорость обмена информацией по глобальной сети, поскольку все вычисления легко повторить для другого значения скорости. Для начала примем скорость обмена информацией равной 64000 бит/с. Тогда время, необходимое для передачи одного кадра длиной 80 байт, составит 0,01 секунды.

Ожидаемое время обслуживания равно 0,01 секунды, откуда получаем, что средняя скорость обслуживания (величина, обратная к ожидаемому времени обслуживания) составляет 100 кадров в секунду.

Из расчетов видно, что скорость обслуживания выше чем скорость поступления кадров, то есть данный канал справляется приходящим трафиком.

Степень использования технических возможностей обслуживающего устройства (P) в одноканальной однофазной системе можно определить, поделив среднюю скорость поступления заказов на среднюю скорость обслуживания.

  1. При Гауссовском распределении Р = 19,44 / 100 = 0,1944 = 19,44%.
  2. При нормальном распределении Р = 4,05 / 100 = 0,0405 = 4,05%.

Зная степень использования обслуживающего устройства, довольно легко определить вероятность отсутствия заказов (обслуживаемых кадров) в данный момент времени. Эта вероятность, обозначенная нами как P0, равна единице минус степень использования канала (P0 = 1 - P).

  1. При Гауссовском распределении Р0 = 1 - 0,1944 = 0,8066 = 80,66%.
  2. При нормальном распределении Р0 = 1 - 0,0405 = 0,9595 = 95,95%.

Получив некоторые сведения относительно степени использования обслуживающего устройства, выясним теперь, каким образом кадры скапливаются в очередях и как влияют связанные с этими очередями задержки на процесс передачи кадров от одной локальн

s