Серия МОНАП: модели, методы, подходы

Информация - Педагогика

Другие материалы по предмету Педагогика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



, предъявляемым к математическим моделям (адекватности, сходимости, универсальности, экономичности) и может служить основой для разработки инструментальных средств проектирования подсистемы модели обучения в ИОС.

Авторские средства проектирования ИОС

МОНАП ядро авторских средств проектирования подсистемы управления процессом обучением в ИОС. Подсистема управления процессом обучения, спроектированная посредством МОНАП на базе пооперационного контроля ответов обучаемого, рассчитывает уровни усвоения материала обучаемым для каждой операции (правила), используя Байесовский подход, который позволяет учитывать предысторию обучения. На основе анализа ответов обучаемых МОНАП определяет учебное задание с оптимальным значением трудности для конкретного обучаемого и отправляет эту информацию в подсистему формирования заданий. Эта подсистема генерирует или выбирает задание из базы данных на следующий шаг обучения. Таким образом, ИОС, спроектированная посредством МОНАП организует адаптивное управление процессом обучения, т.е. обеспечивает полную автоматизацию следующих интеллектуальных функций:

идентификацию знаний обучаемого;

принятие решения о продолжении обучения, достижении цели обучения, аварийное завершение;

определение свойств учебной задачи адекватной знаниям обучаемого на следующий шаг обучения.

Подсистема управления обучением построена на основе следующих моделей:

модель предметной области;

модель обучаемого;

модель управления процессом обучения.

В МОНАП могут быть выделены два основных компонента:

сервисные авторские средства, используемые для создания базы знаний и ее поддержки;

функциональные средства, используемые для обучающего диалога и управления.

База знаний представляет собой совокупность сред обучения. Структура базы знаний представлена на рис. 1.

Каждая среда обучения, включенная в базу знаний содержит следующие знания:

знания о свойствах учебных задач (какого типа и сколько операций необходимо выполнить для решения учебного задания);

знания об обучаемом (имя, текущий шаг обучения, свойства учебного задания на следующий шаг обучения, вероятности правильного выполнения операций, вероятности гипотез об уровнях усвоения на текущий шаг);

знания об управлении процессом обучения определяемые соответствующими значениями параметров модели обучения (число гипотез об уровнях обученности, оптимальное значение трудности задания, минимальный уровень усвоения, "порог стресса" и т.д.).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interchangeable components of

ITS family information base

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 1. Структура базы знаний

Моделирование процесса обучения

В связи с тем, что невозможно дать точные и однозначные рекомендации по параметрической настройке модели управления обучением для произвольной ПО, возникает необходимость в расширении архитектуры ИОС, а соответственно и инструментальных средств проектирования ИОС за счет включения в них подсистемы моделирования процесса обучения.

 

При проектировании конкретной ИОС преподаватель должен задать значения ряда параметров модели управления обучением (Рис. 2).

Рисунок 2.

 

Значения некоторых из указанных параметров могут существенным образом влиять на то, какая задача будет выдана обучаемому в соответствии с его состоянием обученности. Практический опыт использования МОНАП-ПЛЮС для проектирования ИОС GRAD [Galeev I. et al., 1998] показал, что задание значений указанных параметров могут вызывать затруднения у педагогов несмотря на то, что встроенные средства помощи содержат рекомендации по их выбору. Для преодоления этих затруднений педагог может использовать режим моделирования. В этом режиме (Рис. 3) предоставляется возможность задавать любые результаты решения задач.

Рисунок 3.

Педагогу наглядно представляются итоги идентификации знаний обучаемого (используется байесовский подход) в цифровой и графической формах, а также тип текущей задачи, которая будет предложена обучаемому для выполнения на следующем шаге обучения в соответствии с его состоянием обученности и заданными значениями параметров модели обучения.

Варьируя результаты решения задач и значения параметров модели, педагог может подобрать такие значения, при которых модель обучения будет управлять процессом обучения оптимально с точки зрения педагога. В режиме моделирования доступны две различные формы графического представления итогов идентификации знаний обучаемого. В числовой форме эти же данные приведены в таблице, расположенной над графиком. Первый тип графика (Рис. 3) демонстрирует вероятности правильного применения обучаемым каждой операции на заданном количестве шагов обучения, то есть графически отображает данные, находящиеся в той или иной строке таблицы. Второй тип графика демонстрирует историю изменения состояния обученности обучаемого по конкретной операции (графическое изображение того или иного столбца таблицы). Переключиться между этими двумя типами предст

s