Серия МОНАП: модели, методы, подходы

Информация - Педагогика

Другие материалы по предмету Педагогика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



от друга тем, что их свойства описываются различными векторами и .

В качестве основного компонента модели обучаемого используется вектор , где - вероятность правильного применения операции на -м шаге обучения определяется как: . Мера трудности задания вводится как средняя доля ошибок, ожидаемых при выполнении задания:

, (1)

где - математическое ожидание числа ошибок при выполнении задания (трудоемкость задания), то есть , где - вероятность неправильного применения операции на -м шаге обучения.

В соответствии с принципом стабилизации субъективной степени трудности учебных заданий необходимо стремиться к тому, чтобы на каждом шаге обучения выполнялось неравенство: , где - оптимальная мера трудности; - размер интервала.

С учетом введенных определений формулируется цель обучения:

(2)

где - требуемое значение вероятности правильного применения операции; - требуемая сложность задачи в -м классе задач; - время обучения.

Если достигнут требуемый уровень обученности, то обучения успешно заканчивается. Предусматривается возможность аварийного окончания обучения в случае, когда процесс обучения не является эффективным, что оптимизирует затраты на его проведение. На каждом шаге обучения модель обеспечивает идентификацию знаний обучаемого и вынесение решения о продолжении обучения или его завершения (успешном или аварийном).

В настоящее время нами разрабатывается расширение модели. Это даст возможность адаптивно формировать теоретический материал для обучаемого.

Идентификация знаний обучаемого

Идентификация знаний обучаемого (определение значений ) осуществляется следующим образом. Для каждой операции вводится гипотез , соответствующих состояниям обученности. Каждому -му состоянию обученности соответствует условная вероятность правильного применения операции в каждом из её применений, равная .

Гипотезы образуют полную группу несовместных событий, то есть имеет место: , где - вероятность гипотезы для операции .

На каждом шаге обучения наблюдается событие , состоящее в правильном применении -ой операции раз из заданных.

Эта информация служит для пересчета распределения вероятностей гипотез с помощью формулы Байеса.

Каждый -й шаг обучения характеризуется априорным и апостериорным распределениями вероятностей гипотез о состояниях обученности и , связанных между собой следующей зависимостью:

(3)

где - определяется по теореме Бернулли, то есть:

(4)

где - число сочетаний из по .

Учитывая, что априорное распределение вероятностей гипотез на -м шаге совпадает с апостериорным распределением на -м шаге, то есть имеет место , формулу (3) можно переписать в виде который подчеркивает её рекурсивный характер (учитывается вся история обучения), а именно:

(5)

Вероятность правильного применения операции на -м шаге определяется по формуле полной вероятности:

(6)

Окончательная оценка получается приведением значения, вычисленного по формуле (6), до введенных состояний обученности.

Осуществление на -м шаге обучения контроля ошибок и выдачи необходимых объяснений позволяет вести прогнозирование вероятности правильного применения операций на -й шаг обучения:

где (7)

Адаптивное управление процессом обучения

При вынесении решения о необходимости продолжения обучения модель определяет задание, адекватное знаниям обучаемого, на очередной шаг обучения, то есть обеспечивает индивидуальную минимизацию времени обучения. Для этого используется алгоритм стабилизации меры трудности учебных заданий, который можно представить в виде следующей последовательности шагов:

Шаг 1. По результатам -го шага обучения определяются значения для всех .

Шаг 2. Прогнозируются значения на -й шаг обучения: .

Шаг 3. В рассматриваемом классе задач пересчитывается прогнозируемое на -й шаг обучения значение трудности задач того же типа , что и на предыдущем шаге. Если выполняется условие:

(8)

то задача указанного типа вновь включается в учебное задание, формируемое на -й шаг обучения.

Шаг 4. Если условие (8) не выполняется, то для всех типов задач, рассматриваемого класса вычисляются отклонения их значений трудности от оптимального:

. (9)

Шаг 5. Если требуется уменьшить трудность, то есть имеет место: то в рассматриваемом классе осуществляется поиск задач такого типа, трудность которых имела бы минимально возможное отклонение от оптимальной:

(10)

При этом трудоемкость задач искомого типа не должна возрастать, то есть: Кроме того, если для задач различных типов имеет место симметричное отклонение их значений трудности от оптимального:

(11)

то в задание, формируемое на -й шаг обучения, включается задача такого типа, значение трудности которой ближе к значению , то есть для которой, в рассматриваемом случае, дополнительно выполняется: .

В противоположном случае, когда требуется увеличить трудность, то есть имеет место: , так же используется критерий поиска (10). При этом должны соблюдаться противоположные ограничения. Трудоемкость задач искомого типа не должна уменьшаться, то есть Если имеет место симметрия отклонения трудностей (11), то дополнительно должно выполняться: .

Ограничением на область применения модели выступает требование организации пооперационного контроля деятельности обучаемого по выполнению учебных заданий.

Проведенный анализ разработанной модели обучения показал, что она удовлетворяет основным требования

s