Сегнетоэлектрики, их свойства и применение

Реферат - Экономика

Другие рефераты по предмету Экономика

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Пожалуйста введите слова с картинки:

2. И нажмите на эту кнопку.
закрыть



тся также в устройствах нелинейной оптики и электроники и в пироприемниках.

Сегнетоэлектрики типа порядок - беспорядок делятся на три основные группы: группу дигидрофосфата калия (KDP) дигидрофосфаты и дигидроарсенаты щелочных металлов (KH2PO4, PdH2PO4, KH2AsO4, RbH2AsO4, CsH2AsO4) и их дейтриевые аналоги; группу триглицинсульфата (ТГС) (NH2CH2COOH3)H2SO4; жидкокристаллические сегнетоэлектрики. Упорядочивающимися элементами структуры в сегнетоэлектриках группы KDR являются протоны (дейтроны) в водородных связях. Возникновение спонтанной поляризации связано с тем, что положения всех протонов становятся упорядоченными. Основные применения этой группы кристаллов в устройствах нелинейной оптики и электрооптики. Сегнетоэлектрические свойства кристаллов группы ТГС обусловлены упорядочиванием протонов в водородных связях что приводит к возникновению диполей у молекул глицина и сульфатионов. Применяются в пироприемниках и мишенях пировидиконов.

Жидкокристаллические сегнетоэлектрики широкий класс жидких кристаллов, содержащих упорядочивающиеся полярные молекулы. Они обладают рядом электрических и оптических свойств, характерных для сегнетоэлектриков: резким фазовым переходом, сопровождающимся аномалиями тепловых, диэлектрических и оптических свойств; высокими значениями диэлектрической проницаемости (~ 102) и другими. Некоторые жидкокристаллические сегнетоэлектрики обнаруживают петли диэлектрического гистерезиса. Оптические свойства сильно зависят от температуры и направленности внешнего электрического поля; на этом основаны наиболее важные применения таких сегнетоэлектриков: оптические индикаторы, транспаранты, дисплеи и другие.

Ионные и дипольные сегнетоэлектрики существенно различаются по свойствам. Так, все соединения кислородно-октаэдрического типа нерастворимы в воде, обладают значительной механической прочностью, легко получаются в виде поликристаллов по керамической технологии. Наоборот, дипольные сегнетоэлектрики обладают высокой растворимостью в воде и малой механической прочностью. Например, растворимость сегнетовой соли в воде столь велика, что ее кристаллы можно распилить с помощью влажной нити. Благодаря высокой растворимости в воде можно легко вырастить крупные монокристаллы этих соединений из водных растворов.

3. Основная часть

3.1 Получение керамики

Слово керамика говорит о том, что это глиносодержащие материалы, но в настоящее время сюда входит ряд химических соединений, процесс получения керамических материалов из которых идет по методу порошковой металлургии, но несколько изменена последовательность этапов:

1-й этап тонкое измельчение входящих материалов до порошков. Этот процесс обычно осуществляется в шаровых мельницах.

2-й этап пластификация массы. Вводят пластификаторы, которые бывают водорастворимые и расплавимые (поливиниловый спирт, парафин). Получают формовочный полуфабрикат.

3-й этап формовка. Прессование в штампах.

4-й этап отжиг. Низкотемпературный и высокотемпературный отжиг. При температуре больше 1300С происходит выгорание пластификаторов. Выходят изделия с заданной формой и размерами.

Все керамические материалы имеют следующие фазы:

  1. Кристаллическая фаза. Образуется при спекании керамики при взаимодействии глинозема с кварцевым песком. При этом образуются химические соединения или твердые растворы. Эта фаза формирует основные свойства керамики: механические свойства, диэлектрическую прочность, ТКЛР.
  2. Стеклолитная фаза представляет собой прослойки стекла, связывающие между собой кристаллическую фазу. Такие прослойки образуются при расплавлении полевого шпата, при изготовлении керамики. Эта фаза формирует технологические свойства керамики: пористость, гигроскопичность; некоторые виды керамик (радиофарфор) не содержат стеклолитной фазы.
  3. Газовая фаза газы в закрытых порах. Количество их зависит от способа обработки керамической массы. Приводит к ухудшению свойств.

Сегнетоэлектрические керамики широко используются в технике. Рассмотрим процесс получения керамики на примере титаната бария. Титанат бария вместе с добавками (если они нужны) сначала размельчают, после чего смесь выдавливают в форму и прессуют, причем это можно сделать как со связующим веществом, так и без него. Затем следует процесс обжига при высокой температуре, например 1300C, необходимой для получения стеклообразного продукта. При этом получается поликристаллический материал в котором имеются пустоты, причем многие кристаллы часто срастаются вследствие процесса диффузии. Для изменения физических свойств материала (уменьшения диэлектрической проницаемости или понижения температурного перехода) или по техническим причинам (например в качестве флюсов для изменения скорости роста кристаллов) может оказаться необходимыми добавки. Твердость керамических материалов позволяет изготовлять из них изделия практически любых форм и размеров бруски, диски, полые цилиндры и т.д.

3.2 Основные свойства

Общие свойства

Многие свойства сегнетоэлектриков отличаются от свойств которых следовало бы ожидать для однородных материалов. Это обусловлено наличием доменов точно также, как в ферромагнетиках. Так, например, характер тока переключения тесно связан с поведением доменов. Домены имеются как в монокристалле, так и в кристаллах керамического образца. Сегнетоэлектрический домен представляет собой макроскопическую область, в которой направлен

s